Synthesis and Characterization of Biodegradable Aliphatic-Aromatic Copolyesters Nanocomposites Containing POSS

2011 ◽  
Vol 236-238 ◽  
pp. 2028-2031
Author(s):  
Bing Tao Wang ◽  
Yan Zhang ◽  
Zheng Ping Fang

Biodegradable aliphatic-aromatic copolyesters/POSS nanocomposites were synthesized via in situ melt copolycondensation of terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and polyhedral oligomeric silsesquioxanes (POSS) reagents (POSS-NH2 and POSS-PEG). The morphologies and dispersions of two POSS reagents in the nanocomposites and their effects on the mechanical and thermal properties were investigated. TEM and XRD characterizations confirmed that POSS-NH2 formed crystalline microaggregates and took poor dispersions in the nanocomposite, while POSS-PEG had better dispersion in the matrix. Due to the good dispersion and interfacial adhesion of POSS-PEG with the copolyester PBTL matrix, the tensile strength and the Young’s modulus greatly increased for PBTL/POSS-PEG nanocomposite. Moreover, compared with POSS-NH2 the existence of POSS-PEG imparted PBTL good flexibility and increased the mobility of the chains, so the glass-transition temperature and the heat of melting as well as the elongation at break were obviously influenced for PBTL/POSS-PEG nanocomposite.

2011 ◽  
Vol 380 ◽  
pp. 290-293
Author(s):  
Bing Tao Wang ◽  
Ping Zhang ◽  
De Gao

In situ melt copolycondensation was proposed to prepare biodegradable copolyester nanocomposites based on degradable components poly(L-lactic acid) (PLA), rigid segments poly(butylene terephthalate) (PBT), and nanoparticles polyhedral oligomeric silsesquioxanes (POSS). The morphologies and dispersions of two POSS nanoparticles (POSS-NH2 and POSS-PEG) in the copolyester PLABT matrix and their effects on the mechanical properties were investigated. The results demonstrated that the morphologies and dispersions of POSS-NH2 and POSS-PEG showed quite different characteristics. POSS-PEG took better dispersion in the PLABT, while POSS-NH2 had poor dispersions and formed crystalline microaggregates. Due to the good dispersion and strong interfacial adhesion of POSS-PEG with the matrix, the tensile strength and Young’s modulus were greatly improved from 6.4 and 9.6 MPa for neat PLABT up to 11.2 and 70.7 MPa for PLABT/POSS-PEG nanocomposite. Moreover, the incorporation of POSS-PEG could impart macromolecular chains good flexibility and improve the mobility of the chains, so the the elongation at break of PLABT/POSS-PEG nanocomposite dramatically increased from 190 to 350 % compared with neat PLABT.


2012 ◽  
Vol 200 ◽  
pp. 186-189
Author(s):  
Bing Tao Wang ◽  
Ping Zhang ◽  
Yan Zhang ◽  
Zheng Ping Fang

Biodegradable aliphatic-aromatic copolyesters nanocomposites were designed and prepared via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO), poly(L-lactic acid) oligomer (OLLA) and nano-SiO2 or nanostructured cage POSS reagent (POSS). The morphologies and dispersions of two nanofillers and their comparative effects on the mechanical properties of the nanocomposites were investigated. TEM characterizations confirmed that both nano-SiO2 and POSS took good dispersions in the copolyesters matrix. Due to the presence of flexible PEG tails and inorganic-organic nanocaged hybrid structures, POSS showed rather better dispersions and formed more strong interactions with the matrix than nano-SiO2. The experimental results indicated that incorporation of nano-SiO2 or POSS-PEG was a simple and rather effective way to greatly enhance the mechanical and thermal properties of the nanocomposites. Comparative studies of the effects between nano-SiO2 and POSS demonstrated that the introduction of POSS-PEG not only remarkably improved the tensile strength from 6.4 MPa to 11.2 MPa and Young’s modulus from 9.6 MPa to 70.7 MPa, but also dramatically increased the elongation at break from 190 % to 350%.


2009 ◽  
Vol 1240 ◽  
Author(s):  
Ji-Ye Kang ◽  
Su-Mi Eo ◽  
Loon-Seng Tan ◽  
Jong-Beom Baek

AbstractSingle-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) were functionalized with 3,4-diaminobenzoic acid via “direct” Friedel-Crafts acylation reaction in PPA/P2O5 to afford ortho-diamino-functionalized SWCNT (DIF-SWCNT) and MWCNT (DIF-MWCNT). The resultant DIF-SWCNT and DIF-MWCNT showed improved solubility and dispersibility. To improve interfacial adhesion between CNT and polymer matrix, the grafting of ABPBI onto the surface of DIF-SWCNT (10 wt%) or DIF-MWCNT (10 wt%) was conducted by simple in-situ polymerization of AB monomer, 3,4-diaminobenzoic acid dihydrochloride, in PPA. The resultant ABPBI-g-MWCNT and ABPBI-g-SWCNT showed improved the mechanical and electrical properties.


Author(s):  
U. Mahaboob Basha ◽  
D. Mohana Krishnudu ◽  
P. Hussain ◽  
K. Manohar Reddy ◽  
N. Karthikeyan ◽  
...  

In the current work epoxy resin is chosen as matrix, treated Sacharum offinarum ( SugarCane) fiber, Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler are chosen as reinforcement. Room temperature cured Epoxy System filled with Sacharum offinarum fiber and Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler are synthesised by mechanical shear mixer, then kept in a Ultra sonic Sonicator for better dispersion of Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler in the matrix. Different weights of modified Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler (1,2,3,4,5 gm wt) has been incorporated into the Epoxy matrix in order to study the variation of Mechanical and Thermal properties.


2016 ◽  
Vol 846 ◽  
pp. 673-678 ◽  
Author(s):  
Nurul Aina Ismail ◽  
Syuhada Mohd Tahir ◽  
Yahya Norihan ◽  
Muhamad Firdaus Abdul Wahid ◽  
Nur Ezzati Khairuddin ◽  
...  

This study was carried out to evaluate the potential of plastic synthesized using bio-based starch. The method began with extraction of starch from chosen tubers with high content of starch; potato and yam. The samples were first grated, grinded and strained to obtain crude starch, which then centrifuged and rinsed to get pure starch. The starch was then reacted with hydrochloric acid to breakdown amylopectin to prevent the starch from becoming plastic-like. Finally, propan-1,2,3-triol was added as a plasticizer to increase the elasticity of the product. The chemical, mechanical, and thermal properties of the products were analyzed using Fourier transform infrared (FTIR), tensile strength tester and Thermogravimetric analysis (TGA). The FTIR spectra of the product displayed the presence of O-H, C-H, C=O and C-O absorption peaks, which indicate the formation of bioplastic has already occured. The tensile strength obtained for potato and yam starch-based bioplastic are 0.6 MPa and 1.9 MPa, respectively. The result gained from TGA showed that 50% weight loss occurred at 250°C for potato and 310°C for yam-based plastic. The highly biodegradability of the plastic was proven using soil burial test, which observed the percentage of soil biodegradation for potato and yam-based bioplastic in 1 week duration is 43% and 26%, respectively. These bio-based plastics have exhibited good thermal and mechanical properties with high biodegradability that makes them a suitable alternative for the existing conventional plastics.


2021 ◽  
Vol 1041 ◽  
pp. 11-15
Author(s):  
Shyh Shin Hwang ◽  
Shia Chung Chen ◽  
Chiu Lan Yang

This study investigated the effect of polycaprolactone (PCL) loading (0.5, 1, and 3 wt%) on the morphology, tensile strength, and thermal properties of microcellular injection molded PP/PCL and PPgMA/PCL composites. We used the filler, PCL, that is micro-material in size. Results showed that 0.5 wt% loading of PCL on foamed PP has the largest tensile strength. However, tensile strength was almost similar to that of PPgMA composites. Tensile strength depends on the filler dispersion in the matrix and cell size present on the foamed composites. Good dispersion resulted in good tensile strength. The elongation decreased on PP but increased on PPgMA composites. The highest degradation temperature for PP/PCL and PPgMA/PCL was noted for 3.0 wt% PCL loading and neat PPgMA respectively. Cell size decreased and cell density increased with the addition of PCL into the PP and PPgMA matrix.


Author(s):  
Danny Illera Perozo ◽  
Humberto Gómez Vega ◽  
Julian Yepes Martínez

The synthesis and characterization of Polyaniline/Graphene/ Nanodiamond Nanocomposite is reported. The resulting materials were synthetized following a polymerization in situ scheme and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Cyclic Voltammetry (CV). The effect of different loads of graphene and nanodiamond on the resulting nanocomposite was studied. Despite the presence of the host materials, the formation of Polyaniline polymer is successfully accomplished for all samples. The microstructure of the resulting materials is core-shell type with the additives being covered (core) by layers of the conjugated polymer (shell). The thermal stability of the nanocomposites is improved as confirmed by measuring an increase on the Temperature of Decomposition and the Cross-Linking Temperature compared to bare polymer. Electrochemical characterization reveals that the presence of the additives does not affect the electroactive behaviour of the matrix polymer allowing it to reversely shift from different oxidation stages. The effect of additive content on the charge transfer kinetics is discussed.


2015 ◽  
Vol 786 ◽  
pp. 8-12
Author(s):  
Tiam Ting Tee ◽  
Soo Tueen Bee ◽  
Tin Sin Lee ◽  
Chantara Thevy Ratnam ◽  
Haraveen Kaur Jogindar Singh ◽  
...  

In this work, the effect of aging duration time and copper (II) oxide loading level on the physico-mechanical properties of copper (II) oxide added LDPE composites have been investigated. The addition of copper (II) oxide particles in LDPE matrix has significantly decreased the tensile strength of LDPE composites. The occurrence of copper (II) oxide particles in LDPE matrix could reduce the matrix continuities of copper (II) oxide added LDPE composites by the agglomeration of copper (II) oxide particles. This could further cause the applied straining stress unable to be effectively transferred throughout the whole polymer matrix. The increasing of aging time duration up to 8 days has slightly reduced the tensile strength of all copper (II) oxide added LDPE composites. The increasing of copper (II) oxide loading level has significantly decreased the elongation at break of LDPE composites. This is due to poor interfacial adhesion between copper (II) oxide particles and LDPE matrix could further restrict the mobility of LDPE chains under straining stress and thus decrease the elongation at break.


2012 ◽  
Vol 501 ◽  
pp. 194-198 ◽  
Author(s):  
Mou'ad A. Tarawneh ◽  
Sahrim H. Ahmad ◽  
A.R. Shamsul Bahri ◽  
Yu Lih Jiun

This paper discusses the processing of a hybrid of TPNR-MWNTs-OMMT nanocomposites with different percentages of filler to determine the optimum mechanical properties of the hybrid nanocomposites. Three types of hybrid nanocomposites with various MWNTs-OMMT compositions (1%wt MWNTs+3%wt OMMT), (2%wt MWNTs+2%wt OMMT) and (3%wt MWNTs+1%wt OMMT) were prepared. The OMMT layers were found to be separated further with higher nanotubes content as exhibited by X-ray diffraction. The result of tensile test showed that tensile strength and Young's modulus increase in the presence of nanotubes and maximum value were obtained for the nanocomposites with highest nanotubes (3%wt) which increased about 33% and 36%, respectively compared with pure TPNR matrix. On other hand, the elongation at break considerably decreased with increasing the percentage of MWNTs. TEM micrographs revealed aspect ratio and fillers orientation in the TPNR matrix also promoted strongly to interfacial adhesion between fillers and the matrix which contributed significantly to the improvement of the mechanical properties


2016 ◽  
Vol 36 (5) ◽  
pp. 473-480 ◽  
Author(s):  
Min Zhang ◽  
Xiaoqian Diao ◽  
Yujuan Jin ◽  
Yunxuan Weng

Abstract Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) was blended with poly(butylene adipate-co-terephthalate) (PBAT) by extrusion at different weight ratios (PHBH/PBAT: 100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100). Films were then prepared from the blends and characterized in terms of their morphological, rheological, mechanical and thermal properties. The morphological and rheological results indicated that PHBH/PBAT blends are immiscible but exhibit possible molecular interaction. The crystallization temperature of PHBH in the blends decreased, indicating that the addition of PBAT inhibited the crystallization of PHBH. Blending PBAT with PHBH improved the processability compared with that of pure polymers. The mechanical properties, including tensile strength, elongation at break and tear strength, increased with increasing PBAT content. The PHBH/PBAT 20:80 blend exhibited significantly improved mechanical properties, which was due to the reinforcing and toughening effect of the finely dispersed PHBH phase.


Sign in / Sign up

Export Citation Format

Share Document