Study on Modified Zeolite Synthesized from Coal Fly Ash in Adsorption and Desorption of Ammonia Nitrogen

2012 ◽  
Vol 573-574 ◽  
pp. 99-109
Author(s):  
Qi Jin Luo ◽  
Jian Yu Chen ◽  
Man Zhu ◽  
Zhi Hua Pang ◽  
Jun Luo ◽  
...  

The “Twelfth Five-Year” plan of China starts at the emission reduction task in controlling the total amount of ammonia nitrogen. Therefore, the method of how to remove ammonia nitrogen quickly and effectively will be the key point of wastewater treatment. In the current paper, One zeolite synthesized from coal fly ash (P-type zeolite, ZP) was prepared and then modified using lanthanum. The structure of the zeolite was characterized by means of SEM, X-ray, TG-DSC, and the like. The characteristics of ZP and lanthanum-modified ZP (LaZP) in the adsorption and desorption of ammonia nitrogen were simultaneously studied, wherein the results show that ZP and LaZP are featured with obvious crystal characteristics, lots of gap structures, and a strong characteristic peak of P-type zeolite shown in the XRD atlas. For the LaZP, the adsorption equilibrium can be carried out in 30 min. The data for the adsorption dynamics to the ammonia nitrogen are in line with the pseudo-second order kinetics equation, and the adsorption isotherme is well fitted to the Langmuir model. The regeneration test shows that the desorption rate of ammonia nitrogen is proportional to the concentration of NaCl when the pH is about 7. The desorption rate of LaZP to the ammonia nitrogen can reach 90% when the concentration of NaCl is 0.4 mol/l, and the desorption rate of ZP is 70%. Compared with ZP, the desorption speed of the LaZP is quicker, the adsorption equilibrium can be carried out in 6 h, and the adsorption equilibrium of ZP can be slowly carried out in 10 h. Moreover, the adsorption and desorption properties of the LaZP are greatly improved.

2010 ◽  
Vol 7 (4) ◽  
pp. 1200-1205 ◽  
Author(s):  
Parag Solanki ◽  
Vikal Gupta ◽  
Ruchi Kulshrestha

Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.


2020 ◽  
Vol 5 (3) ◽  
pp. 1193-1198
Author(s):  
Henilkumar M. Lankapati ◽  
Dharmesh R. Lathiya ◽  
Lalita Choudhary ◽  
Ajay K. Dalai ◽  
Kalpana C. Maheria

2016 ◽  
Vol 37 (2) ◽  
pp. 215-234 ◽  
Author(s):  
Eleonora Sočo ◽  
Jan Kalembkiewicz

Abstract The study investigates chemical modifications of coal fly ash (FA) treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II) and Pb(II) ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K) and pH (2 - 11) values. The maximum Cd(II) and Pb(II) ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS) and images of scanning electron microscope (SEM). The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II) and Pb(II) ion uptake from polluted waters.


2020 ◽  
Vol 840 ◽  
pp. 48-56
Author(s):  
Violla Bestari Ayu Sabrina Putri ◽  
Dwi Siswanta ◽  
Mudasir Mudasir

The adsorption of Cu (II) ions onto selective adsorbent of coal fly ash from Sugar Factory Madukismo, Yogyakarta, Indonesia modified with dithizone has been investigated in batch mode. Some parameters influencing immobilization of dithizone and adsorption of Cu (II) were optimized including an effect of pH, contact time and initial concentration of Cu (II) ions. The FT-IR and XRD analytical results show that the surface of coal fly ash can be modified by immobilization of selective organic ligand towards Cu (II) ions. The optimum conditions for adsorption of Cu (II) are achieved at pH 5, the optimum mass of DICFA and ACFA for copper adsorption were 0.2 g. Kinetics adsorption for copper ions follows pseudo-second-order kinetics with optimum adsorption contact time 60 min for DICFA and ACFA. Isotherms adsorption for Cu ion follow the Langmuir isotherms with chemisorption process and optimum concentration of Cu ion adsorption of 70 mg.L-1 for DICFA and ACFA.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2664 ◽  
Author(s):  
Yuqiao Yang ◽  
Ruichao Zhu ◽  
Jin Li ◽  
Xuejing Yang ◽  
Jun He ◽  
...  

In order to enrich and separate three coumarins (columbianetin acetate, osthole and columbianadin) from Angelicae Pubescentis Radix (APR), an efficient method was established by combining macroporous resins (MARs) with preparative high-performance liquid chromatography (PHPLC). Five different macroporous resins (D101, AB-8, DA-201, HP-20 and GDX-201) were used to assess the adsorption and desorption characteristics of three coumarins. The result demonstrated that HP-20 resin possessed the best adsorption and desorption capacities for these three coumarins. Moreover, the adsorption dynamics profiles of three coumarins were well fitted to the pseudo second order equation (R2 > 0.99) for the HP-20 resin. The adsorption process was described by the three isotherms models including Langmuir (R2 > 0.98, 0.046 ≤ RL ≤ 0.103), Freundlich (R2 > 0.99, 0.2748 ≤ 1/n ≤ 0.3103) and Dubinin Radushkevich (R2 > 0.97). The contents of columbianetin acetate, osthole and columbianadin in the product were increased 10.69-fold, 19.98-fold and 19.68-fold after enrichment, respectively. Three coumarins were further purified by PHPLC and the purities of them reached above 98%. Additionally, the anti-inflammatory effects of these three coumarins were assessed by Lipopolysaccharide (LPS)-induced RAW 264.7 cells. It was found that the production of NO and MCP-1 was obviously inhibited by three coumarins. Columbianetin acetate, osthole and columbianadin could be used as potentially natural anti-inflammatory ingredients in pharmaceutical products. It was concluded that the new method combining MARs with PHPLC was efficient and economical for enlarging scale separation and enrichment of columbianetin acetate, osthole and columbianadin with anti-inflammatory effect from the APR extract.


2020 ◽  
Vol 840 ◽  
pp. 57-63
Author(s):  
Dina Fitriana ◽  
Mudasir Mudasir ◽  
Dwi Siswanta

Adsorption of Pb(II) ions onto selective adsorbent of dithizone-immobilized coal fly ash (DCFA) from Holcim, Cilacap, Indonesia has been investigated in batch experiments. Prepared coal fly ash (CFA) modified by immobilization of dithizone previously were characterized by FT-IR and XRD. Several parameters influencing the adsorption of Pb(II) ions such as effect of pH, adsorbent dosage, contact time and initial concentration of ions on the efficiency of the adsorption were studied. The optimum condition of Pb(II) adsorption was found at pH 5, adsorbent dosage 0.1 g, contact time 60 min and initial Pb(II) ions concentration of 60 mg L–1. The adsorption kinetics of Pb(II) ions on DCFA was found to follow a pseudo-second-order kinetic model. The adsorption isotherm data were fitted to the Langmuir model. Kinetics and adsorption isotherm studies suggest that the capacity and affinity of the DCFA in adsorbing Pb(II) ions is significantly improved compared to those of non-immobilized activated coal fly ash (ACFA).


2012 ◽  
Vol 518-523 ◽  
pp. 2736-2739 ◽  
Author(s):  
Chang Nian Wu ◽  
Yu Chao Tang ◽  
Li Hua Tang

Coal fly ash (CFA) was modified by hydrothermal treatment using NaOH solutions for zeolite synthesis. The XRD patterns of zeolite and coal fly ash are presented. The synthesized zeolite was investigated for adsorption of heavy metal ions in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals. The adsorption isotherm could be described by Freundlich isotherm equations. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu2+ and Cd2+.


2018 ◽  
Vol 271 ◽  
pp. 1-8 ◽  
Author(s):  
Ulambayar Rentsenorov ◽  
Batmunkh Davaabal ◽  
Jadambaa Temuujin

Raw coal fly ash and acid pretreated fly ash were used to synthesize A-type zeolite by hydrothermal treatment. In order to synthesize zeolite A an aqueous gel having a molar batch composition of Na2O:Al2O3:1.926SiO2:128H2O was utilized. Fly ash and zeolitic products were characterized by SEM, XRF, XRD and cation exchange capacity (CEC). After hydrothermal treatment, several types of zeolites were formed: zeolite A, analcime, faujasite and hydroxy-sodalite. The highest content of zeolite A was formed in the mixture treated at 80°C for 8 hours. CEC values of the zeolitic products were 28-38 times higher than that of in raw fly ash. Acid pretreatment which leads to low calcium and iron content is preferable method for processing of fly ash for the zeolite synthesis. Synthesized zeolite can be used for ion exchangers for water treatment.


Sign in / Sign up

Export Citation Format

Share Document