A Super Highly Sensitive Glucose Biosensor Based on Ag/PPy Nanoparticle-Ethyl Cellulose Hybrid Materials

2008 ◽  
Vol 58 ◽  
pp. 15-20 ◽  
Author(s):  
Xiang Zhong Ren ◽  
Pei Xin Zhang ◽  
Jian Hong Liu ◽  
Qian Ling Zhang

Ag/polypyrrole(PPy) composite nanoparticles within 100 to 150nm diameter were successfully synthesized. Fourier transform infrared spectroscopy(FTIR) and X-ray diffraction patterns(XRD) data suggested that the nanoparticles were composed of Ag and PPy. An amperometric glucose biosensor was fabricated by adsorbing of glucose oxidase(GOx) to an Ag/PPy nanoparticle-ethyl cellulose composite material modified platinum electrode. The biosensor exhibited a super highly sensitive response to the analyte with a detection limit of 1.0×10-7mol/L. Moreover, the biosensor showed quick current response. The effects of some factors, such as working voltage, pH value , mensuration temperature and mass ratio of Ag/PPy nanoparticles to ethyl cellulose, were also studied.

2011 ◽  
Vol 117-119 ◽  
pp. 77-80
Author(s):  
Huai Yao ◽  
Guang Lin Zhu ◽  
Yong Zhi Wang

As a surface technology, electroless plating is applied to almost every industry branch. To improve the wettability of SiC powder and metal, the surface of SiC powders was plated with a Ni plating in the basic solution according to the reaction theory of electroless plating. The main salting was nickel chloride, and the reducing agent was hydrazine hydrate. The plating velocity, phase transformation and microstructurewere investigated using XRD and SEM. The results show that the SiC powders had no increasing weight and no reaction can occur when the pH below 8.5. when the pH value was between 10 and 11, the weight gain of powders closed to the theoretical value, the Ni peaks in X-ray diffraction patterns of powders was relatively strong, the SiC coating surface was composed of granular, cellular and globe-like Ni, the substrate was covered of Ni plating completely. When the pH value was above 11, the gas production was becoming more pronounced and the reaction speed increasing with the increased of the pH value, the time from deep blue to colorless of solution started to drop off, the Ni(OH)2peaks in X-ray diffraction patterns of powders have already begun to emerged and a small amount of nickel films was generated.


1988 ◽  
Vol 32 ◽  
pp. 303-310
Author(s):  
T. Paul Adi ◽  
H. F. Stehmeyer

AbstractThe presence of metal oxide films from wave solder baths on timed module pins are partly responsible for non-wet problems in subsequent soldering steps. The cylindrical geometry of the pins lends itself to the characterization of thin oxide films by using the highly sensitive Debye-Scherrer camera method. As confirmed by Electron Hicroprobe Analysis (EMA), pins containing thin oxide films were used to obtain the diffraction patterns. A software program was developed that subtracts the diffraction angles of an oxids-free control pin from the pattern of the contaminated pin, and tabulates the residual d-spacing (interplanar distance) of the contaminant film.


2008 ◽  
Vol 3 ◽  
pp. 67-87 ◽  
Author(s):  
Wafa I. Abdel-Fattah ◽  
Fikry M. Reicha ◽  
Tarek A. Elkhooly

Two biphasic BCP ceramic samples were synthesized by chemical precipitation and microwave curing of calcium deficient hydroxyapatite CDHA under the same pH value and temperature but varied in their initial Ca/P molar ratio. Precipitates were characterization after thermogravimetric analysis, fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption spectroscopy and TEM. Hydroxyapatite (HA) contents were measured for the two biphasic calcium phosphate (BCP) ceramics by sintering the calcium-deficient apatites (CDHA). The results reveal two condensation mechanisms of HPO42- affecting the Ca/P molar ratio after calcination. The X-ray diffraction patterns of BCP powders show the in situ formation of -TCP in the BCP powder. The amount of -TCP phase increases as the initial Ca/P molar ratio decreases due to more calcium deficiency in CDHA structure. The influence of HPO42- incorporation on increasing -TCP phase content after calcination is evaluated. TEM micrographs proved the effect of microwave curing during the preparation process on reducing of particle size to nanoscale range and the destruction of CDHA to finer HA and -TCP particles upon calcination.


2011 ◽  
Vol 15 (1) ◽  
pp. 37-42
Author(s):  
T. Mahalingam ◽  
V. Dhanasekaran ◽  
S. Rajendran ◽  
R. Chandramohan ◽  
Luis Ixtlilco ◽  
...  

Electrodeposited CdZnSe thin films have been prepared at various bath temperatures. The thickness of the films was estimated between 850 nm and 1500 nm by stylus method. The X-ray diffraction patterns revealed that the polycrystalline nature with cubic structure of CdZnSe alloy thin films. Microstructural properties such as, crystallite size, dislocation density, microstrain and number of crystallites per unit area were calculated using predominant orientation of the films. SEM images revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. The surface roughness of the film was estimated using topographical studies. Optical properties of the film were analyzed from absorption and transmittance studies. Optical band gap of the films increased from 1.67 to 1.72 eV with the increase of bath temperature from 30 to 90℃. The optical constants (refractive index (n) and extinction coefficient (k)) of CdZnSe thin films were evaluated using optical studies.


1990 ◽  
Vol 208 ◽  
Author(s):  
Robert F. Fischetti ◽  
Songtao Xu ◽  
J. Kent Blasie

ABSTRACTWe have recorded two-dimensional X-ray diffraction patterns from fivebilayer Langmuir-Blodgett multilayer films. The films were deposited on alkylated glass substrates from monolayers of arachidic acid which were spread on barium or cadmium cation containing subphases: the pH was systematically varied from 4 to 9. The diffraction patterns were recorded using doubly-focusing X-ray optics and a two-dimensional position sensitive detector.Generalized Patterson function analysis of the meridional X-ray diffraction I (qxy = 0, qz), which arises from the profile structure of the multilayer, indicated that the bilayer to bilayer correlations improved with increasing pH value (i.e., with incorporation of divalent metal cations into the film). Experimentally determined electron density profiles have previously shown that the average in-plane density of the down-stroke monolayers was greater than that of the the up-stroke monolayers, in agreement with the observed transfer ratios.We observed Bragg rods at several qxy-values only for multilayers for which the subphase was of intermediate to high pH. The intensity and degree of sampling of the Bragg rods along qz increased with increasing pH value. At the highest pH values, the in-plane intermolecular correlation lengths were ∼600 Å and the bilayer to bilayer intermolecular correlation lengths were ∼165 Å or ∼2 1/2 bilayers. This indicates that for the fatty-acid salts the monolayers of low average in-plane density are “patched” with separated domains which have been deposited epitaxially on the underlying monolayers of high average inplane density.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


1985 ◽  
Vol 50 (10) ◽  
pp. 2139-2145
Author(s):  
Alexander Muck ◽  
Eva Šantavá ◽  
Bohumil Hájek

The infrared spectra and powder X-ray diffraction patterns of polycrystalline YPO4-YCrO4 samples are studied from the point of view of their crystal symmetry. Mixed crystals of the D4h19 symmetry are formed over the region of 0-30 mol.% YPO4 in YCrO4. The Td → D2d → D2 or C2v(GS eff) correlation is appropriate for both PO43- and CrO43- anions.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2518
Author(s):  
Dorota Kołodyńska ◽  
Yongming Ju ◽  
Małgorzata Franus ◽  
Wojciech Franus

The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers.


Sign in / Sign up

Export Citation Format

Share Document