Diamond Composites for Power Electronics Application

2008 ◽  
Vol 59 ◽  
pp. 143-147
Author(s):  
Svetlana Levchuk ◽  
Monika Poebl ◽  
Gerhard Mitic

In view of power electronics applications, baseplates made from metal diamond composites have been manufactured and characterised. The surface contours of the baseplates were measured during thermal loads up to 180°C starting at room temperature with help of the TherMoiré technique. X-ray analysis investigation was performed to detect porosity and local inhomogeneities of the baseplates. Al- and Cu-based diamond composite baseplates were Ni-plated and used for manufacturing of 3.3 kV IGBT modules. The solder layer between AlN AMB (active metal brazing) substrates and baseplates was investigated by ultrasonic and X-Ray analyses. Thermal resistance of the manufactured IGBT modules was characterised and compared to that of IGBT modules with AlSiC or Cu baseplates. The influence of thermal cycling on the solder layer and thermal resistance of the manufactured module was investigated.

1994 ◽  
Vol 338 ◽  
Author(s):  
Frank Baldwin ◽  
Paul H. Holloway ◽  
Mark Bordelon ◽  
Thomas R. Watkins

ABSTRACTThe stresses in Al-0.75w%Si-0.5w%Cu unpatterned metallization on silicon wafers have been measured using substrate curvature and x-ray diffraction techniques after quenching in liquid nitrogen. Stresses were measured with and without phospho-silicate glass overlayers and SiO2 underlayers, and thermal cycling followed by relaxation at room temperature. It was found that cooling the substrates to 77 K and warming to room temperature caused the metallization stress to go from tensile to compressive. Subsequent heating of the substrates to above ∼70°C followed by cooling to room temperature caused the stress to become tensile. Both compressive and tensile stresses were found to relax at room temperature with a time constant of 2.3 ± 0.2 hours. The magnitude of stress relaxation was a function of temperature, being about 20 MPa after heating to 240°C. The metallization exhibited both compressive and tensile flow stresses of ∼100 MPa near room temperature.


Author(s):  
Rajesh Tripathi ◽  
Sejin Im ◽  
Douglas Devoto ◽  
Joshua Major ◽  
Sreekant Narumanchi ◽  
...  

Increased adoption of hybrid and electrical vehicles as well as renewable energy systems are driving the innovation in power module packaging. Thermal substrate, one of the major components of power modules, is not an exception, and technological advancements are necessary to meet increased reliability requirements. DuPont has developed a thermally conductive polymer film that provides very low thermal resistance and very high insulation. The film can be bonded to conductive and thick metallic layers and this polymer equivalent of DBC shows very high reliability in addition to high performance characteristics. Electrically insulating layers within a power electronics module are critical for separating circuitry from thermal management layers. Electrical insulating substrates typically used in power electronics modules utilize a ceramic layer, comprised most commonly of either Al2O3, AlN, or Si3N4. Thin Cu layers are bonded to either side of the substrate using a direct bond Cu (DBC) or active metal brazing (AMB) process. These processes involve bonding metallization layers to both sides of the ceramic at a high temperature as bonding to only one side would cause deformation during the cooling phase. Typical metal thickness bonded to either side of the ceramic is about 0.3–0.6 mm as the high temperature manufacturing process does not allow very thick metals to be bonded and this limits the heat spreading capability of the thermal substrate. DuPont's new Temprion™ Organic Direct Bond Copper (ODBC) address aforementioned problems, increasing thermal durability and reliability as well as enabling system layer suppression. Temprion™ ODBC's dielectric layer will absorb thermo-mechanical stress from the metals due to CTE mismatch, dramatically improving durability of the system. In addition, various kinds of metals including Cu and Al can be easily bonded to Temprion™ DB films through simple process. There are no thickness limitations on bonding metal sheets and metal attached at the bottom can be used as an integrated heat sink/baseplate. Al2O3 and Si3N4-based substrates were utilized as a baseline for reliability comparison with the DuPont substrates. The industry-standard substrates in used in this study have a thickness of 0.3 and 0.8 mm for the Cu metallization layers and 0.38 and 0.32 mm for the insulating layer respectively for Al2O3 an Si3N4 insulators. DuPont ODBC substrates were fabricated by attaching a polyimide layer to a layer of 0.8-mm-thick Cu. The polyimide and bottom Cu layer cross-sectional footprints are both 50.8 mm × 50.8 mm. The corners of both layers were filleted with various radii (0.5, 1.0, 2.0, and reversed 2.0 mm) to explore the impact of different stress concentrations between the metallization and insulating layers. The top Cu metallization was inset 2.0 mm from the perimeter of the electrically-insulating substrate and bottom Cu metallization.10 samples each of the DuPont ODBC and industry Al2O3 substrates were placed in a thermal shock chamber and cycled between temperature extremes of −40°C and 200°C. Substrates were inspected every 1000 cycles. After 5000 cycles, the ODBC substrates experienced no hipot failures, but preliminary edge delamination was visually observed. Al2O3 substrates all failed after 50 thermal cycles.Five DuPont ODBC samples were placed in a thermal chamber and subjected to an elevated temperature of 175°C. After 2000 hours, no hipot failures were observed, but edge delamination was again observed.Five DuPont ODBC samples were attached to a cold plate with Kapton tape. Heater cartridges were attached to the top of the substrates with Kapton tape and thermocouples were placed in several locations through the package. The heater cartridges were alternated between on and off states to allow for the substrates to cycle between −40°C and +200°C. While the change between the maximum and minimum temperatures is smaller for the power cycling test compared to the thermal cycling test, the heater cartridge and cold plate create a thermal gradient within the samples that is not possible with passive thermal cycling. After 2000 hrs cycles of testing, no hipot failures or edge delamination have been observed. Herein we show that the DuPont ODBC substrate design is a promising alternative to traditional industry substrates based on ceramic insulators. The reliability of the substrate design has been demonstrated under several thermomechanical accelerated tests and the electrical and thermal performance has been measured. Future work will include reliability comparisons to other industry substrates, including thermal shock testing of substrates with HPS, AlN, and Si3N4 ceramic layers. Thermal models will correlate thermal resistance values measured by the transient thermal tester and compare the ODBC substrate performance to industry substrates within a commercialized power electronics module. The modeling will also optimize the thickness of the metallization layers within the ODBC substrates to minimize the junction temperature of the switching devices.


1990 ◽  
Vol 203 ◽  
Author(s):  
M.A. Moske ◽  
P.S. Ho ◽  
D.J. Mikalsen ◽  
J.J. Cuomo ◽  
R. Rosenberg

ABSTRACTA method based on the bending beam technique has been developed to measure the mechanical stresses of fine lines confined by a dielectric layer. This method has been employed to determine the thermal stress of AI(2at%Cu) lines passivated by a quartz overlayer between room temperature and 400ºC. The effect of quartz confinement was analyzed by matching the thermal strains at the metal/quartz interfaces and imposing a mechanical equilibrium condition on the structure. The analysis enables us to deduce the triaxial stress components of metal and quartz from measurements of the substrate bending parallel and perpendicular to the length direction of the lines. Results of the measurementshow a substantial stress enhancement as a result of the confinement, with the stress level significantly higher than that of a passivatecd blanket film. The magnitude of the stress depends on the line geometry, the layer deposition conditions and the extent of plastic deformation during thermal cycling. Results of this measurement are consistent with those determined using X-ray techniques.


1994 ◽  
Vol 9 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Paul R. Besser ◽  
Sean Brennan ◽  
John C. Bravman

We describe a method for directly determining the strain state of passivated metal lines. Synchrotron radiation in the grazing incidence geometry is used to directly measure the in-plane interplanar spacing along the length and width of the lines, while the strain normal to the surface of the line is measured using conventional diffraction methods. The entire strain state is thereby defined. Previous work has measured out-of-plane reflections, fit them to a straight line as a trigonometric function of the angle of orientation, and extrapolated to determine the principal strains. The equivalence of the two x-ray methods on the same sample is demonstrated at room temperature before and after thermal cycling. For short time strain relaxation experiments during thermal cycling, measurement of the three principal strains leads to the direct calculation of the stress relaxation. We apply the strain determination technique to Al-0.5% Cu lines passivated with Si3N4 as the lines are thermally cycled from room temperature to 450 °C and back. The strain state, stress state, and strain relaxation of the lines are calculated at several temperatures during thermal cycling.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
Vinci Mizuhira ◽  
Hiroshi Hasegawa

Microwave irradiation (MWI) was applied to 0.3 to 1 cm3 blocks of rat central nervous system at 2.45 GHz/500W for about 20 sec in a fixative, at room temperature. Fixative composed of 2% paraformaldehyde, 0.5% glutaraldehyde in 0.1 M cacodylate buffer at pH 7.4, also contained 2 mM of CaCl2 , 1 mM of MgCl2, and 0.1% of tannic acid for conventional observation; and fuether 30-90 mM of potassium oxalate containing fixative was applied for the detection of calcium ion localization in cells. Tissue blocks were left in the same fixative for 30 to 180 min after MWI at room temperature, then proceeded to the sampling procedure, after postfixed with osmium tetroxide, embedded in Epon. Ultrathin sections were double stained with an useal manner. Oxalate treated sections were devided in two, stained and unstained one. The later oxalate treated unstained sections were analyzed with electron probe X-ray microanalyzer, the EDAX-PU-9800, at 40 KV accelerating voltage for 100 to 200 sec with point or selected area analyzing methods.


Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Sign in / Sign up

Export Citation Format

Share Document