Preparation of Advanced Activated Carbon from Low Ash Shenmu Coal

2012 ◽  
Vol 600 ◽  
pp. 182-185
Author(s):  
Qiao Wen Yang ◽  
Kun Wang ◽  
Hui Zhao ◽  
Chuan Liu

By comparing two kinds of coal in the preparation of activated carbon, Shenmu coal and Shenmu low ash coal, this paper discussed the advantages of low ash coal in preparing activated carbon, as well as the influence of the carbonization temperature, the activation temperature, the activation time, and the steam flow on the performance of coal activated carbon. Key words: activated carbon, ash content, iodine value, pore structure

2012 ◽  
Vol 430-432 ◽  
pp. 127-131
Author(s):  
Qiao Wen Yang ◽  
Hui Zhao ◽  
Jian Chang ◽  
Kun Wang ◽  
Luo Tao

This paper studied experimental conditions of making higher absorption activated carbon from Jincheng anthracite. The result was obtained by using the orthogonal experiment in which four factors were designated: the carbonization temperature, the carbonization time, the activation time as well as the additive types, with the target of iodine value. The optimized parameters had been found out: the carbonization temperature is 600 °C,the carbonization time is 1.5 h, the activation time is 4 h and the additive is NaNO3 which is better in a weight proportion of 8 %. At last, under the optimized parameters, the better activated carbon products could be gained by acid pickling, which has a higher iodine value 1094.8 mg/g and low ash content 8.73 %.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shijie Li ◽  
Tao Xing ◽  
Yilin Wang ◽  
Pengwei Lu ◽  
Weixue Kong ◽  
...  

In order to achieve the purpose of regulating the pore structure characteristics of activated carbon by adjusting the experimental parameters, the effects of carbonization temperature, carbonization time, pre-activation temperature, pre-activation time and impregnation time on the pore structure of sargassum-based activated carbon (SAC) are studied by orthogonal experiment. The gravimetric capacitance of SAC and the relationship between the gravimetric capacitance and specific surface area are also studied. The results show that the SACs prepared at all experimental conditions have developed pore structure and huge specific surface area, reaching 3,122 m2/g. The pore size of SAC is almost all within 6 nm, in which the micropores are mainly concentrated in 0.4–0.8 nm, the mesopores are mainly concentrated in 2–4 nm, and the number of micropores is significantly higher than that of mesopores. During the preparation of SAC, the effect of carbonization temperature on the specific surface area and specific pore volume of SAC is very significant. The effect of carbonization time on the specific surface area of SAC is significant, but the effect on specific pore volume can be ignored. The effects of pre-activation temperature, pre-activation time, and impregnation time on specific surface area and specific pore volume of SAC can be ignored. In addition, SACs show good gravimetric capacitance performance as electrode material for supercapacitors, which can significantly increase the capacitance of supercapacitors and thus broaden their applications. The gravimetric capacitance and specific surface area of SACs show a good linear relationship when the activated carbons have similar material properties and pore size distribution.


2013 ◽  
Vol 67 (2) ◽  
pp. 284-292 ◽  
Author(s):  
Wen-hong Li ◽  
Qin-yan Yue ◽  
Zuo-hao Ma ◽  
Bao-yu Gao ◽  
Yan-jie Li ◽  
...  

Sludge-based activated carbon (SAC) was prepared from paper mill sewage sludge by physical activation with steam for wastewater treatment in this study. The effects of preparation variables, including carbonization temperature, carbonization time, activation temperature and activation time, on iodine number and yield were investigated through orthogonal experiments. The influences of washing by deionized water and acid on the characteristics and adsorption capacities of SAC for phosphate, methylene blue and reactive red 24 were also studied. The results indicated that the optimal preparation conditions were: carbonization temperature of 350 °C, carbonization time of 40 min, activation temperature of 800 °C and activation time of 20 min. The characteristics and adsorption capacities of SAC were obviously different before and after washing, especially by acid. The surface area was improved and adsorption capacities for dyes increased after washing, while adsorption capacity for phosphate decreased. The maximum adsorption capacities provided strong evidence of the potential of SAC as an alternative adsorbent for wastewater treatment.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4007-4020
Author(s):  
Wei Xu ◽  
Junli Liu ◽  
Kang Sun ◽  
Yanyan Liu ◽  
Chao Chen ◽  
...  

The effects of different activation temperatures (Ta), ranging from 300 to 750 °C, on the ash content, yield, ignition point, microcrystalline structure, surface functional group, pore structure, and adsorption performance of activated carbon in preparing activated carbon by phosphoric acid (H3PO4) were systematically studied. The yield and volatile content of activated carbon decreased with the increase of Ta, while the ash content, ignition point, and graphitization degree showed the opposite results. The turning point of ash content increasing rate of activated carbon occurred at 500 °C. The thermal decomposition temperature of phosphonate compounds was approximately 450 °C. With increased Ta, micropores were generated first, followed by mesopores. The ignition point of activated carbon was related to the volatile content and the degree of graphitization. Activated carbon with low ash content, high yield, well-developed pore structure and good adsorption performance was prepared at 350 to 425 °C. With increased Ta, the volatile content decreased, and the ignition point of activated carbon increased. At Ta higher than 500 °C, the aromatic and condensed ring structure, graphitization degree, and mesopore ratio of the activated carbon increased, yielding decreased adsorption performance.


2015 ◽  
Vol 4 (2) ◽  
pp. 59-64
Author(s):  
Muhammad Turmuzi ◽  
Ardiano Oktavianus Sahat Tua ◽  
Fatimah

Activated carbon can be made of organic or anorganic materials. Salak peel is a potential organic material as activated carbon. This research aimed to understand the effect of temperature in activated carbon with chemical activation ZnCl2 production from salak peel. The method included preparation of raw material, chemical activation, pyrolysis and iodine value test. The ratio of ZnCl2 is1:1 g/g, the activation time is 2 hours and the acivation temperature variation is 400, 450, 500, 550 and 600 oC. Results showed that the iodine value increased and yield decreased as the increasing of activation temperature. The highest iodine value and yield were achieved at 600°C and 400°C, the values were 694 mg/g and 30,93%.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Pei-Hsing Huang ◽  
Hao-Hsiang Cheng ◽  
Sheau-Horng Lin

This study presents the fabrication of high-quality activated carbon (AC) from discarded coconut shells. The effects of experimental parameters such as activation temperature and activation time on the basic characteristics of AC, including charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) specific surface area, total pore volume, and iodine adsorption, are investigated. The results indicate that as the activation temperature and activation time increase, the charcoal yield of the AC decreases. In contrast, iodine adsorption, ash content, pH value, and total pore volume increase with activation temperature. The AC sample activated at 1000°C for 120 min had the highest BET specific surface area and total pore volume and thus the best CO2adsorption performance. This sample was compared with 30-mesh commercial AC. The results reveal that coconut-based AC has better instantaneous adsorption capabilities.


2012 ◽  
Vol 184-185 ◽  
pp. 1110-1113 ◽  
Author(s):  
Li Fen He ◽  
Qi Xia Liu ◽  
Tao Ji ◽  
Qiang Gao

Various jute-based activated carbon fibers were prepared by using jute fibers as raw materials and phosphoric acid as activating agent. The effects of three main factors such as concentration of activating agent, activation temperature and activation time on the yield and adsorptive properties of active carbon fibers were investigated via orthogonal experiments. The surface physical morphology of jute-based activated carbon fiber was also observed by using Scanning Electron Microscope. Results showed that the optimum conditions were phosphoric acid concentration of 4 mol/L, activation temperature of 600 °C and activation time of 1h. The yield, iodine number and amount of methylene blue adsorption of the active carbon fiber prepared under optimum conditions were 37.99 %, 1208.87 mg/g and 374.65 mg/g, respectively.


2013 ◽  
Vol 68 (7) ◽  
pp. 1503-1511 ◽  
Author(s):  
J. M. Salman ◽  
F. M. Abid

Palm-date pits were used to prepare activated carbon by physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO2) gasification. The effects of variable parameters, activation temperature, activation time and chemical impregnation ratios (KOH: char by weight) on the preparation of activated carbon and for removal of pesticides: bentazon, carbofuran and 2,4-dichlorophenoxyacetic acid (2,4-D) were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were respectively employed to correlate the effect of variable parameters on the preparation of activated carbon used for removal of pesticides with carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from palm-date pits were found to be: activation temperature of 850 °C, activation time of 3 h and chemical impregnation ratio of 3.75, which resulted in an activated carbon yield of 19.5% and bentazon, carbofuran, and 2,4-D removal of 84, 83, and 93%, respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 2298-2302
Author(s):  
Yue Zhou ◽  
Wei Guo Pan ◽  
Rui Tang Guo ◽  
Xiao Bo Zhang ◽  
Xue Ping Wen ◽  
...  

In order to reduce power plant nitric oxide emission with gaining economical adsorbent, activated carbon was prepared from the raw materials of orange peel under different operating conditions in this paper. The methylene blue adsorption value of different activated carbon has also been tested, and the effects on the methylene blue adsorption performance of different dipping concentration, activation time and carbonization temperature were studied. The finding is that the dipping concentration has the most important impact on methylene blue adsorption value. The highest methylene blue adsorption value of orange peel activated carbon has shown as 277.746mg/g under the following conditions: phosphoric acid concentration was 40%, activation time was 12 hours and carbonization temperature was 500°C. It is a economically feasible absorbent material through a great deal of experiments and analysis.


2009 ◽  
Vol 59 (12) ◽  
pp. 2387-2394 ◽  
Author(s):  
X. Wang ◽  
N. Zhu ◽  
J. Xu ◽  
B. Yin

An improved method for preparing activated carbons from wet waste activated sludge (WAS) by direct chemical activation was studied in this paper. The effects of processing parameters on iodine adsorption capacity of the product were investigated. Results show that sludge-based activated carbon prepared with KOH had a larger iodine value than those activated with ZnCl2 and KCl. The maximum iodine value was observed at the KOH concentration of 0.50 M. Increasing the impregnation time from 10 to 20 h resulted in a 20% increase in the iodine value. The highest iodine value was obtained at the activation temperature of 600°C and holding time of 1 h. Sludge water content had insignificant effects on the iodine value of products. Raw WAS with a water content of 93.2% can be converted into an activated carbon with a high specific surface area of 737.6 m2 g−1 and iodine value of 864.8 mgg−1 under optimum experimental conditions. Other physical properties such as total pore volume, micropore volume and mean pore diameter of the product were also reported and compared with those of commercial activated carbon.


Sign in / Sign up

Export Citation Format

Share Document