Research on PET Beer Bottle Structural Parameters and it’s Strength

2013 ◽  
Vol 641-642 ◽  
pp. 488-491
Author(s):  
Wei Yuan ◽  
Li Hua Xie ◽  
Gai Mei Zhang ◽  
Da Zhi Liao ◽  
Jian Dong Lu

According to the formula of the resistance to internal pressure, the main factors of the strength of the beer bottles are analyzed. Using ANSYS finite element analysis software, PET beer bottles damaged boundary conditions are determined. PET beer bottle model is established, and have the stress analysis. The internal pressure and the bottle top pressure are applied on PET beer bottles. PET beer bottles strain is analyzed in two loads with different thickness and different bottle diameter. Thickness and bottle diameter influence of the mechanical properties of PET beer bottles are obtained. It provides a method and basis of the structure to optimize the design of PET beer bottles.

2013 ◽  
Vol 312 ◽  
pp. 21-24 ◽  
Author(s):  
Wei Yuan ◽  
Li Hua Xie ◽  
Gai Mei Zhang ◽  
Da Zhi Liao ◽  
Jian Dong Lu

According to the formula of the resistance to internal pressure, the main factors of the strength of the beer bottles are analyzed. Using ANSYS finite element analysis software, PET beer bottles damaged boundary conditions are determined. PET beer bottle model is established, and have the stress analysis. The internal pressure and the bottle top pressure are applied on PET beer bottles. PET beer bottles strain is analyzed in two loads with different thickness and different bottle diameter. Thickness and bottle diameter influence of the mechanical properties of PET beer bottles are obtained. It provides a method and basis of the structure to optimize the design of PET beer bottles.


Author(s):  
Devon Keane ◽  
Domenick Avanzi ◽  
Lance Evans ◽  
Zahra Shahbazi

There are many instances where creating finite element analysis (FEA) requires extensive time and effort. Such instances include finite element analysis of tree branches with complex geometries and varying mechanical properties. In this paper, we discuss the development of Immediate-TREE, a program and its associated Guided User Interface (GUI) that provides researchers a fast and efficient finite elemental analysis of tree branches. This process was discussed in which finite element analysis were automated with the use of computer generated Python files. Immediate-TREE uses tree branch’s data (geometry, mechanical properties and etc.) provided through experiment and generates Python files, which were then run in finite element analysis software (Abaqus) to complete the analysis. Immediate-TREE is approximately 240 times faster than creating the model directly in the FEA software (Abaqus). The process used to develop Immediate-TREE can be applied to other finite element analysis of biological systems such as bone and tooth.


2014 ◽  
Vol 971-973 ◽  
pp. 781-784
Author(s):  
Hong Lan Liu ◽  
Ning Hu

Based on the RCAR test standards, this paper analyzed the low-speed bumper tests regulations, proposed the design principles of the crash-box and identified the key parameters to evaluate the crashworthiness of the crash-box. This paper built the crash finite element models of the front bumper system, used the finite element analysis software LS-DYNA and HYPERWORKS to simulate the crashworthiness of the crash-box based on different thickness models and completed the performance study of the crash-box. The optimized crash-box has good crashworthiness and it will provide important guidance to the crash-box design.


2014 ◽  
Vol 580-583 ◽  
pp. 1358-1363
Author(s):  
He Ping Zhou ◽  
En Yong Wang ◽  
Yu Xia Hu ◽  
Zhi Qiang Liu ◽  
Jian Bo Cui

In this article, we focused on changes of mechanical properties in lining of tunnel caused by loess cavity. We established a corresponding model and carried out numerical analysis by using finite element analysis software ADINA, considered the effect of different locations, different size of the cavity and depth of the tunnel. The results showed that change of the mechanical properties has the largest effect on the lining at the arch foot nearby the loess cavity, and it grows with the growth of the cavity‘s size and depth of the tunnel.


2011 ◽  
Vol 101-102 ◽  
pp. 1096-1100
Author(s):  
Quan Rong Jing ◽  
Feng Xu ◽  
De Gao

Through the test of mechanical properties of the straw-biodegradable tableware, the relationship between performance and processing technology was analyzed and the optimal solution was obtained. And using finite element analysis software, the internal stress distribution under the specific load was obtained based on mechanical properties, more valuable reference method about tableware design was provided through studying the changing intensity.


2015 ◽  
Vol 1091 ◽  
pp. 83-87
Author(s):  
Xi Bing Hu ◽  
Fei Hua Yi ◽  
Da Long Zhang ◽  
Hui Mao

The finite element models of the planar K-joint are established based on the finite element analysis software ANSYS. The bracing members are under the action of axial force and moment. Different rotational deformation values of the joint with different geometric parameters are reached with calculation and analysis. Results show that the deformation value approximate linearly increased with the increasing load of the bracing member. It also shows that the influence of the bracing member diameter and wall thickness is larger on rotational deformation values and the rotational deformation of the part of the K-joint is greatly influenced by the deformation of joint region.


2012 ◽  
Vol 429 ◽  
pp. 72-77
Author(s):  
Yan Ni Wang ◽  
Xiao Lin Jiang ◽  
Ping Yang

In order to master the basic laws of preparation coating by electrical explosion spraying technology and obtain coating with higher mechanical properties, finite element analysis software is used to simulate temperature field in process of coated condensation. Some basic rules of process parameters are drawed. To obtain high-performance coatings, coating material whose sedimentary particle has a higher interface temperature is first considered according to the substrate material property parameters. In the process of prepare coating, voltage should be better to use peak Voltage of electric explosion spraying equipment. Self-inductance of circuit should be as low as possible.


2014 ◽  
Vol 644-650 ◽  
pp. 489-492
Author(s):  
Dong Fang Hu ◽  
Yan Ping Du

As the installed base of all other assemblies, the corn combine harvester chassis supports a variety of loads from the harvester and ground, so its reliability directly affects the quality and safety of the corn combine harvester. The analysis of corn combine harvester chassis was carried out with finite element analysis software. First, the 3D part of the chassis was established and simplified in accordance with the relevant principles. Second, the stress distribution and displacement of the chassis in the no-loaded and full-loaded conditions were calculated by meshing,applying loads and constraining boundary conditions. The analysis result is of great significance to enhance the quality and reliability of the chassis.


Author(s):  
Soham Chowdhury ◽  
Amit Anand ◽  
Adhish Singh ◽  
Bidyut Pal

Ti-based alloys have been commonly employed in manufacturing implants for orthopedic applications. Binary Titanium-Niobium (Ti-25Nb) alloy is a promising material for potential applications in orthopedics because of their lower elastic moduli and superior biocompatibility than the conventional Ti-based alloys. Implants with porous structures encourage bone ingrowth and reduce the effect of stress-shielding further. This study is aimed at establishing the relationship between the mechanical performance and structural parameters of porous body-centered-cubic (BCC) structures made up of Ti-25Nb (25% by wt.). Solid models of BCC porous structures were constructed (unit cell size: 2 mm; overall size: 8 × 8 × 8 mm3). Finite element analysis (FEA) of the BCC structures with porosity ranging from 29% to 79% (seven porosities) was conducted under tension, bending, and torsional loads. The Gibson-Ashby model and Exponential regression model were also employed to determine the stiffness of the above porous structures. The functional relationships between effective Young’s modulus, effective yield strength, and porosity generated from both the models were found to match the FEA results well. Results indicated that porosity in the range of 50%−70% can be used to design graded porous stems to mimic the mechanical properties of cortical bone.


Sign in / Sign up

Export Citation Format

Share Document