Study on Properties of Epoxy Resin /Al2O3 Composites

2013 ◽  
Vol 652-654 ◽  
pp. 116-120 ◽  
Author(s):  
Yong Jiu Zhao ◽  
Xin Min Huang ◽  
Rong Rong Dai ◽  
Wei Zhang ◽  
Yu Cheng Wu ◽  
...  

An epoxy resin/Al2O3 composite was prepared via a new type of process.The effects of Al2O3 content on the mechanical properties and thermal conductivity of the composite were investigated.It shows that the thermal conductivity of the epoxy resin/Al2O3 composite aggrandizes with the addition of aluminum oxide.As the content of Al2O3 is 30%,the thermal conductivity coefficient reaches 0.46W/m·K. Al2O3 particles can hinder the propagation of flaw or make crack change direction.and lead to generate scales flake and islands peak shape on the fracture surface when The thetensile fracture surfaces tested under the liquid nitrogen temperatures(77k). When the mass fraction of Al2O3 is 20%, the mechanics properties of the composite is better

Author(s):  
Dahai Zhu ◽  
Yu Qi ◽  
Wei Yu ◽  
Lifei Chen ◽  
Mingzhu Wang ◽  
...  

Graphene nanoplatelets (GNPs) have excellent thermal conductivity. It can significantly improve the heat-conducting property of epoxy resin (EP) matrix. In this paper, the GNPs/EP composites were successfully prepared by using ultrasonication and the cast molding method. The prepared GNPs/EP composites were systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal conductivity analyzer. Some factors affecting the thermal transfer performance of the composites were discussed. The defoamation has great influence on the thermal conductivity of composite. There is a nearly linear relationship between the mass fraction and the thermal conductivity of composite when the mass fraction of GNPs is below 4.3%. The results show that when the mass fraction of GNPs is 4.3% with crushing time of 2 s, the thermal conductivity of GNPs/EP composite is up to 0.99 W/m K. The thermal conductivity is increased by 9.0% compared with that without pulverization treatment (0.91 W/m K). When it is ground three times, the thermal conductivity of composite reaches the maximum (1.06 W/m K) and it is increased by 307.7% compared with that of epoxy resin matrix.


2015 ◽  
Vol 1088 ◽  
pp. 415-418
Author(s):  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Cristiane Inácio de Campos ◽  
Elen Aparecida Martines Morales ◽  
Juliana Cortez Barbosa ◽  
...  

These research objectives the development and evaluation of physical and mechanical properties of a hybrid composite manufactured epoxy resin reinforced by Eucalipto sp. wood sawdust and treated piassava fibers. The evaluated properties were modulus of elasticity (MOE) and modulus of rupture (MOR) in static bending, water absorption after 24 hours, porosity and apparent density. Three factors with two levels was evaluated: thickness (3 mm and 4 mm), volumetric resin fraction (45% and 50%) and the use or not of laminate piassava fibers reinforcement, leading to a factorial design of 23 type. Were manufactured four panels, two with 50% and two with 55% of resin, using casting method. For the physical and mechanical properties obtained, the better conditions were the one that uses 50% of epoxy resin, 55% sawdust mass fraction and with the use of laminated piassava fibers reinforcement. The thickness was not statistically significant in obtaining the properties evaluated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ma Qing ◽  
Teng Chong ◽  
Hu Jing ◽  
Baoan Sun

Fe-based amorphous alloy has excellent soft magnetic properties; traditionally, Fe-based amorphous alloy such as soft magnetic devices was fabricated by insulation enveloping and suppression molding methods. In this process, the aging of organic envelope materials and the crystallization of Fe-based amorphous alloy were usually occurring, accompanying with low magnetic induction and poor mechanical properties. The direct ink writing (DIW) technique can make complex-shaped parts and needs no heating treatment after forming, which can avoid the effect of traditional molding process. In the present study, varying mass fraction FeSiB/EP composite parts were prepared by the DIW technique with the Fe-based amorphous alloy powder and epoxy resin, in which microscopic morphology, magnetic properties, and mechanical properties of FeSiB/EP soft magnetic composites were studied. The results indicate that the slurry with iron powder mass fraction of 92.3, 92.6, and 92.8 wt% has good printing performance and self-support ability, which is suitable for DIW. The density of the printed parts is about 4.317, 4.449, and 4.537 g/cm3, which is almost similar with the iron powder. The tensile strength and elongation of printing parts are significantly improved compared with the pure epoxy resin. From the photos of microscopic morphology of printing parts, it can be seen that FeSiB powders are evenly dispersed in EP, no pores, and defects, with the proportion increasing of powders; the insulation coating thickness decreases; and the magnetic performance improves. The optimal sample is 92.8 wt% FeSiB/EP, in which saturation magnetic induction strength is 137.9759 emu/g and coercivity is 4.6523 A/m.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadia A. Ali ◽  
Alaa M. Abd-Elnaiem ◽  
Seenaa I. Hussein ◽  
Asmaa Sh. Khalil ◽  
Hatem R. Alamri ◽  
...  

Objective: In this work, graphene (Gr) or/and Cu particles are used to improve the thermal and mechanical properties of epoxy resin. Methods: Various contents of Gr powder (0.1, 0.3, and 0.5 wt%), Cu powder (10, 30, and 50 wt%) were loaded to epoxy to form Gr/epoxy and Cu/epoxy composites, respectively. In addition, hybrids epoxy/Cu/Gr samples were prepared with a selection of lowest (0.1 and 10) and highest (0.5 and 50) ratios of Gr, and Cu, respectively. Results: The thermal conductivity increases with the increasing weight ratio of Gr and Cu as compared to the pure epoxy. The Thermogravimetric analysis (TGA) of epoxy composites and hybrid composites reveals an improvement in the thermal stability. In addition, the mechanical properties such as hardness shore D and the wear resistance are enhanced for both the epoxy composites and hybrids composites. However, the Ep+0.5wt%Gr+50wt%Cu hybrid composite has the maximum hardness 84, thermal conductivity of 3.84 W/m.K, it shows the lowest wear resistance 2.7×10-6 mm3/Nm at loading 10 N. Conclusion: The hybrid composite containing 0.5wt%Gr and 50wt%Cu shows the maximum hardness and thermal conductivity, as well as the lowest wear resistance when compared to other composites. The physical properties of the hybrid composite can be controlled by the host blend, and hence the morphology, and interfacial characteristics.


2012 ◽  
Vol 535-537 ◽  
pp. 2499-2502
Author(s):  
X. Wang ◽  
S. R. Zheng ◽  
R. M. Wang

Epoxy resin structural adhesives modified by flexible curing agent. Dependening on the mechanical properties of epoxy resins on the flexible curing agent content was studied. The impact fracture toughness was discussed in terms of fracture surface fractography.


2011 ◽  
Vol 685 ◽  
pp. 357-361 ◽  
Author(s):  
Xin Guang Wang ◽  
Wan Li Gu ◽  
Zong Wei Niu

The short carbon fiber (Cf) reinforced hydroxyapatite (HA) bio-composite was prepared by an in-situ processing. Mechanical properties and microstructure of Cf/HA were investigated. Structures of HA was analyzed using XRD and fracture surface morphologies of bio-composite were analyzed using SEM. Result shows that grain size of HA under hot pressing sintering (1423K, 35MPa) grow up to approximately 50nm. Bio-composite exhibits excellent mechanical properties when Cfmass fraction is 3%, whose flexural strength and flexural modulus reach the maximum values of 130MPa and 36GPa which surpass common level of nature bone. SEM fracture surface morphologies of Cf/HA shows Cfcan be uniformly dispersed in the HA matrix when the mass fraction less than 6%, while when the mass fraction is11%, partial aggregation appears.


Author(s):  
Sergey Savotchenko ◽  
Ekaterina Kovaleva

We study experimentally the influence of mass fraction of L-20 hardener cold cure on mechanical properties of epoxy diane resin ED-20. We measure the hardness, tensile strength, bending strength and impact strength of resin at different values of the hardener mass fraction. It is found that the ratio hardener mass fraction of 1:0.9 leads to the highest values of the hardness, tensile strength, compressive strength and bending strength. The impact viscosity is maximum at the ratio hardener mass fraction of 1:0.8. The optimal ratio of a non-toxic safe hardener to the resin is derived based on obtained mechanical characteristics.


Sign in / Sign up

Export Citation Format

Share Document