Self-Hardening Calcium Phosphate Composite Scaffold for Bone Tissue Engineering

2009 ◽  
Vol 79-82 ◽  
pp. 19-22 ◽  
Author(s):  
Hua Liu ◽  
Chang Ren Zhou

Calcium phosphate cement (CPC) sets in situ to form solid hydroxyapatite, can conform to complex cavity shapes without machining, has excellent osteoinductivity, and is able to be resorbed and replaced by new bone. Therefore, CPC is promising for craniofacial and orthopaedic repairs. However, its low strength and lack of macroporosity limit its use. This study investigated CPC reinforcement with absorbable fibers, the effects of fiber volume fraction on mechanical properties and macroporosity, and the biocompatibility of CPC-fiber composite. The liquid phase of CPC in this study was the weak acidic solution of chitosan. Chitosan has favourable biocompatibility, which has high viscosity in solution. The incorporation of chitosan could improve the handling properties of CPC. The liquid phase contained citric acid could strongly improve the hydration rate of CPC, which shortened the setting time and increased the compressive strength of CPC. In addition, the weak acidic environment around the biomaterials could accelerate the degradation of CPC, which was important to bone tissue engineering. The rationale was that large-diameter absorbable fibers would initially strengthen the CPC graft, then dissolve to form long cylindrical macropores for colonization by osteoblasts. Compressive strength was measured vs. fiber volume fraction from 0% (CPC Control without fibers) to 70%. Animal experiment showed that the material had osteoinductivity and biodegradability when the material was implanted into the muscle pouches in the thigh of rabbits. Compressive strength (mean ± SD; n=3) of CPC with 70% fibers was 0.8± 0.1 MPa. Long cylindrical macropores 100~300 μm in diameter were created in CPC after fiber dissolution, and the CPC-fiber scaffold reached a total porosity of 75.1±1.2% with 70% fibers. The new CPC-fiber formulation had good potentiality of ectopic bone induction. The method of using large-diameter absorbable fibers in bone graft for mechanical properties and formation of long cylindrical macropores for bone ingrowth may be applicable to other tissue engineering materials.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Xinzhong Wang ◽  
Jun He ◽  
Ayman S. Mosallam ◽  
Chuanxi Li ◽  
Haohui Xin

Basalt fiber reinforced concrete (BFRC) has been widely utilized in various constructions such as buildings, large industrial floors, and highways, due to its excellent physical and mechanical properties, as well as low production cost. In order to address the influence of basic parameters such as fiber volume fraction (0.05∼0.40%), fiber length (12∼36 mm) of BF, and compressive strength (30, 40, and 50 MPa) of concrete on both physical and mechanical properties of BFRC including compressive strength, tensile and flexural strength, workability, and anti-dry-shrinkage cracking properties, a series of standard material tests were conducted. Experimental results indicated that clumping of fibers may occur at relatively higher fiber volume fraction resulting in mixing and casting problems. Based on experimental values of mechanical properties and anti-dry-shrinkage cracking resistance of BFRC, the reasonable basalt fiber length and fiber volume fractions are identified. The addition of a small amount of short basalt fibers can result in a considerable increase in both compressive strength and modulus of rupture (MoR) of BFRC and that the proposed fiber length and content are 12.0 mm and 0.10%∼0.15%, respectively. As the length of basalt fibers increases, the development of early shrinkage cracks decreases initially and then increases slowly and the optimal fiber length is 18.0 mm. Results of the study also indicated that early shrinkage cracks decrease with the increase of fiber volume fraction, and when the volume fraction of 0.20% is used, no cracks were observed. All the findings of the present study may provide reference for the material proportion design of BFRC.


2011 ◽  
Vol 346 ◽  
pp. 26-29 ◽  
Author(s):  
Hong Wei Wang

A designed experimental study has been conducted to investigate the effect of the fiber fraction of polypropylene fiber on the mechanical properties of concrete containing fly ash, a large number of experiments have been carried out in this study. The mechanical properties include compressive strength, splitting tensile strength and compressive modulus of elasticity. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of action of polypropylene fiber on these mechanical properties has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and splitting tensile strength, and the modulus of elasticity of concrete containing fly ash decrease gradually with the increase of fiber volume fraction with appropriate content.


Author(s):  
Saman Hedjazi ◽  
Daniel Castillo

This paper evaluates the effect of discrete fibers in concrete on the pulse velocity and mechanical properties of FRC. Two different type of synthetic fibers consisting of Polypropylene and Nylon were investigated. The effect of concrete mix proportions such as types of fiber, volume fraction of fiber, water-to-cement ratio (w/c), and curing conditions were examined. An experimental program was designed and conducted on 100 mm x 200 mm cylindrical specimens to evaluate the properties of FRC. The compressive strength obtained from the Compression Test Machine (CTM) was compared to those calculated from UPV. The difference between two types of synthetic fibers on concrete properties were investigated. Results show that the highest compressive strength of Polypropylene Fiber Reinforced Concrete (PFRC) was achieved at 0.5% fiber volume fraction, whereas for Nylon Fiber Reinforced Concrete (NFRC) the highest compressive strength was obtained at 1.0% fiber volume fraction. Additionally, results show that the available equations relating UPV to compressive strength of concrete need modifications when used for different fibers. Therefore, either new or modified empirical equations are needed for better estimation of mechanical properties of FRC.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


1994 ◽  
Vol 77 (7) ◽  
pp. 1897-1900 ◽  
Author(s):  
Hockin H. K. Xu ◽  
Claudia P. Ostertag ◽  
Linda M. Braun ◽  
Isabel K. Lloyd

2019 ◽  
Vol 28 (4) ◽  
pp. 273-284
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

Rising environmental concerns and depletion of petrochemical resources have resulted in an increased interest in biodegradable natural fiber-reinforced polymer composites. In this research work, jute fiber has been used as a reinforcement and polylactic acid (PLA) as the matrix material to develop jute/PLA green composites with the help of compression molding technique. The effect of fiber volume fraction ranging from 25% to 50% and curing temperature ranging from 160°C to 180°C on different samples were investigated for mechanical properties and water absorption. Results obtained from various tests indicate that with an increase in the fiber volume fraction, tensile and flexural strength increases till 30% fiber fraction, thereafter decreases with further increase in fiber content. Maximum tensile and flexural strength of jute/PLA composites was obtained with 30% fiber volume fraction at 160°C curing temperature. The trend obtained from mechanical properties is further justified through the study of surface morphology using scanning electron microscopy.


RSC Advances ◽  
2016 ◽  
Vol 6 (67) ◽  
pp. 62071-62082 ◽  
Author(s):  
Lisheng Zhao ◽  
Junjie Li ◽  
Liang Zhang ◽  
Yu Wang ◽  
Jiexin Wang ◽  
...  

A calcium phosphate cement (CPC) scaffold has been used to repair bone defects, but its low compressive strength and poor osteogenesis greatly hinder its clinical application.


Sign in / Sign up

Export Citation Format

Share Document