Development of Lean Duplex Stainless Steels (LDSS) with Superior Mechanical and Corrosion Properties on Laboratory Scale

2013 ◽  
Vol 794 ◽  
pp. 714-730 ◽  
Author(s):  
S. Srikanth ◽  
P. Saravanan ◽  
P. Govindarajan ◽  
S. Sisodia ◽  
K. Ravi

Low-Ni and Ni-free varieties of duplex stainless steels (DSSs) have been successfully developed for the first time on laboratory scale in SAIL. The alloy compositions for Ni-free and low-Ni (<1.5 wt%) DSSs were evolved through formulation of appropriate chromium and nickel equivalents to achieve an optimum phase balance of 55 vol% austenite and 45 vol% ferrite in stainless steel microstructures. Laboratory heats were made achieving target chemistries and cast into 100 mm square cross-sectioned ingots. The ingots were subsequently soaked at 1150 °C for 3 hrs for thermal/ compositional homogenization and hot rolled in number of passes to 6 and 16 mm strips in Hillé experimental rolling mill with finish rolling temperatures of 950-980 °C. The hot rolled strips were eventually conferred solution annealing treatment by soaking them at 1060 °C for 2 hours followed by rapid quenching in water to prevent precipitation of deleterious intermetallic compounds (IMCs) and secondary phases. The new steels revealed an exceptional combination of properties: higher yield strength (488 MPa for low-Ni DSS and 501 MPa for Ni-free DSS), higher tensile strength (664 MPa for low-Ni DSS and 677 MPa for Ni-free DSS) and superior Charpy V-notch impact toughness (230 and 129 Joules at room temperature and -20°C, respectively, for low-Ni DSS as against 80 and 52 Joules at similar temperatures for Ni-free DSS). The yield strength of the steels was assessed to be about 1.6-1.8 times that of conventional austenitic grades AISI 304 L and AISI 316 L in annealed condition. The low-Ni and Ni-free DSS showed remarkable corrosion resistance and have been found to exhibit passivity, corrosion rates as low as 0.08-0.11 mpy, pitting potentials in the range of 482-596 mV and charge transfer resistances of the order of 106 W.cm2 in highly corrosive environment of 3.5% NaCl. The steels have been thus found to be superior in pitting/ localized corrosion resistance to AISI 304 L with pitting potential of 437 mV and comparable in performance with AISI 316 L with its high pitting potential of 602 mV. Even in the strongly reducing environment of 0.1 N H2SO4, the new steels have revealed tendency to passive film formation, breakdown potentials of 1127-1153 mV and passive film impedances of 104 W.cm2, comparable to the standard austenitic grades AISI 304 L and AISI 316 L. In boiling MgCl2 solutions, the low Ni DSS has been found to resist stress corrosion cracking (SCC) up to 24 h; the time for crack initiation being intermediate to that for AISI 304 L (3 h) and AISI 316 L (32 h). The Ni-free DSS, on the other hand, was found to exhibit no signs of SCC failure even after 72 h of exposure to the test solution. The degree of sensitization (DoS) for both low Ni and Ni-free DSSs has been quantified to be £ 0.05 in 0.5 M H2SO4 + 0.01 M KSCN, which has revealed their insusceptibility to intergranular corrosion (IGC). The steels have been found to be free from deleterious intermetallic phases such as sigma (s), chi (c), etc. and this has been ascertained from corrosion rates of <10 mdd in ferric chloride corrosion testing as per ASTM A 923 Method C.

Alloy Digest ◽  
1980 ◽  
Vol 29 (5) ◽  

Abstract REPUBLIC X-80-W is a high-strength, low-alloy steel developed to achieve a minimum yield strength of 80,000 psi in the as-hot-rolled condition. It also exhibits good fatigue performance, good bendability, and good weldability. It is available as bars and can be used in various automotive and machinery applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-372. Producer or source: Republic Steel Corporation.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Habib ◽  
M. S. Damra ◽  
J. J. Saura ◽  
I. Cervera ◽  
J. Bellés

The failure of the protective oxide scales of AISI 304 and AISI 316 stainless steels has been studied and compared at 1,000°C in synthetic air. First, the isothermal thermogravimetric curves of both stainless steels were plotted to determine the time needed to reach the breakdown point. The different resistance of each stainless steel was interpreted on the basis of the nature of the crystalline phases formed, the morphology, and the surface structure as well as the cross-section structure of the oxidation products. The weight gain of AISI 304 stainless steel was about 8 times greater than that of AISI 316 stainless steel, and AISI 316 stainless steel reached the breakdown point about 40 times more slowly than AISI 304 stainless steel. In both stainless steels, reaching the breakdown point meant the loss of the protective oxide scale of Cr2O3, but whereas in AISI 304 stainless steel the Cr2O3scale totally disappeared and exclusively Fe2O3was formed, in AISI 316 stainless steel some Cr2O3persisted and Fe3O4was mainly formed, which means that AISI 316 stainless steel is more resistant to oxidation after the breakdown.


DYNA ◽  
2015 ◽  
Vol 82 (189) ◽  
pp. 22-29
Author(s):  
Jose Luddey Marulanda-Arevalo ◽  
Saul Castañeda-Quintana ◽  
Francisco Javier Perez-Trujillo

2007 ◽  
Vol 364-366 ◽  
pp. 215-220
Author(s):  
Shuo Jen Lee ◽  
J.J. Lai ◽  
Yu Ming Lee ◽  
Ming Der Ger ◽  
S.W. Cheng

Passive film of stainless steels possesses good corrosion resistant property. However, the passive film formed in nature is not uniform and the quality is not consistent. It is the major causes for local corrosion. The pitting potential test is a traditional method to test local corrosion of stainless steels. The local corrosion is usually induced by the break-down of the passive film. Therefore, it can be utilized to evaluate the quality of the passive film. Also, because the pitting test is quick and inexpensive, many tests can be performed to evaluate the uniformity of the passive film. This study focuses on SS316 stainless steel. The specimens were treated with electropolishing processes. The original and the processed specimens were tested by pitting potential tests. From these results, the distribution and the uniformity of passive film could be evaluated. An efficient and inexpensive index of the uniformity of the passive film is proposed.


2010 ◽  
Vol 660-661 ◽  
pp. 454-459 ◽  
Author(s):  
Maurício David Martins das Neves ◽  
Luzinete Pereira Barbosa ◽  
Luís Carlos Elias da Silva ◽  
Olandir Vercino Correa ◽  
Isolda Costa

Stainless steel (SS) powders are used in the preparation of sintered SS products. One of the applications of sintered SS products is as filters in the petrochemical and food processing industries. In these industries, the SS filters are subject to severe conditions associated with the removal of solid particles from the fluid. Hence, SS filters should have adequate mechanical strength and high corrosion resistance. Welding can be used to manufacture SS filters. In this study, sintered AISI 316L specimens were welded using the TIG (Tungsten Inert Gas) process. The weld joints were examined by optical microscopy and by scanning electron microscopy. Electrochemical polarization measurements were carried out to evaluate the influence of welding on the corrosion resistance of sintered filters.


LWT ◽  
2016 ◽  
Vol 69 ◽  
pp. 131-138 ◽  
Author(s):  
Letícia Sopeña Casarin ◽  
Fabrício de Oliveira Casarin ◽  
Adriano Brandelli ◽  
Júnia Novello ◽  
Sukarno Olavo Ferreira ◽  
...  

Alloy Digest ◽  
1985 ◽  
Vol 34 (8) ◽  

Abstract ALLEGHENY LUDLUM AL 2205 ALLOY is in the family of duplex alloys in which added nitrogen significantly improves corrosion resistance, especially in the welded condition. The microstructure consists of a balanced mixture of austenitic and ferritic phases. Its corrosion resistance to many environments is superior to Types 316 or 317 and it has a yield strength more than double that of AISI conventional austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-462. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1978 ◽  
Vol 27 (8) ◽  

Abstract UCAR 302 is a cryogenically processed stainless steel wire with the same composition as AISI Type 302. The processing gives tensile and torsional properties that are independent of wire diameter and markedly greater than those of conventional stainless steels. UCAR 302 has uniformly high properties: 290,000 psi tensile strength and 145,000 psi minimum torsional yield strength. Thus it provides greater design flexibility than conventional stainless steels. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, machining, joining, and surface treatment. Filing Code: SS-354. Producer or source: AL Tech Specialty Steel Corporation.


Sign in / Sign up

Export Citation Format

Share Document