Indentation Crack Initiation and Ductile to Brittle Transition Behavior of Fused Silica

2013 ◽  
Vol 797 ◽  
pp. 667-672 ◽  
Author(s):  
Peng Yao ◽  
Wei Wang ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Hong Tao Zhu ◽  
...  

To provide a fundamental knowledge for the high efficiency grinding and ultra-precision grinding of fused silica, ductile mode and brittle mode material removal mechanisms were investigated by conducting micro/nanoindentation experiments in the range of 4.9 mN - 1960 mN. Before observing cracks and determining the ductile to brittle transition penetration depth, the samples were etched with hydrofluoric acid to expose cracks. The typical damage morphology of fused silica was discussed by observing the surface and cross-section of indentations, and the depth of SSD was found to be determined by the cone cracks or borderline cracks in the different load range. The ductile to brittle transition penetration depth of fused silica under Vickers indentation was 180 nm.

2010 ◽  
Vol 447-448 ◽  
pp. 21-25 ◽  
Author(s):  
Peng Yao ◽  
Nobuhito Yoshihara ◽  
Nobuteru Hitomi ◽  
Ji Wang Yan ◽  
Tsunemoto Kuriyagawa

There is a demand for high-efficiency and high surface integrity grinding of fused silica. Ductile grinding is an ideal method for producing a mirror finished surface on hard and brittle materials to significantly decrease polishing time. However, the fused silica is still difficult to ductile grind because of its high brittleness. A creep feed taper grinding method was applied to investigate the relationship between maximum grit depth of cut and surface integrity of fused silica. Ductile mode grinding was achieved on fused silica. When the depth of cut exceeds the critical wheel depth of cut, the surface suddenly changes from the ductile mode to the brittle mode. At the same ratio of wheel speed and table speed, the critical wheel depth of cut is noticeably increased by increasing the wheel speed which caused an increase in the temperature at the interface of grains and workpiece. The depth of subsurface damage (SSD) was investigated by polishing the ground surface. The experiment results show that the depth of SSD is deepest in transition mode and stables in brittle mode.


2011 ◽  
Vol 314-316 ◽  
pp. 1960-1964 ◽  
Author(s):  
Peng Yao ◽  
Ya Dong Gong ◽  
Suo Xian Yuan ◽  
Tian Feng Zhou ◽  
Ji Wang Yan ◽  
...  

To grind fused silica in ductile mode, surface and subsurface micro cracks (SSMC) on ground fused silica should be repaired by CO2 laser irradiation before ultra-precision grinding. In this paper, 2D thermal analysis of single pass laser irradiation of fused silica was conducted, and the simulation results were discussed by comparing with the experiment results. To repair SSMC and decrease the surface roughness of ground fused silica simultaneously, the maximum temperature on the surface during laser irradiation should be controlled higher than 3280 K and lower than 3550 K.


2012 ◽  
Vol 565 ◽  
pp. 621-626
Author(s):  
Peng Yao ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Tunemoto Kuriyagawa

A rough ground fused silica surface can be ground in a ductile mode by ultra-precision grinding after repairing the surface and subsurface micro cracks (SSMC) by CO2 laser irradiation. In this paper, 2D finite element thermal analysis of unidirectional multi-pass laser irradiation on fused silica was conducted, and the simulation results were compared with the thermal analysis and experiments results of single pass laser irradiation. Thermal analysis results show that the SSMC on the ground fused silica can be repaired and surface roughness can be decreased simultaneously by unidirectinal laser raster scan with a power of 10.5 W, a scan velocity of 0.2 m/s and a scan spacing of 40 μm.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1850 ◽  
Author(s):  
Yann E. Bouvier ◽  
Diego Serrano ◽  
Uroš Borović ◽  
Gonzalo Moreno ◽  
Miroslav Vasić ◽  
...  

In modern aircraft designs, following the More Electrical Aircraft (MEA) philosophy, there is a growing need for new high-power converters. In this context, innovative solutions to provide high efficiency and power density are required. This paper proposes an unregulated LLC full-bridge operating at resonant frequency to obtain a constant gain at all loads. The first harmonic approximation (FHA) model is not accurate enough to estimate the voltage gain in converters with high parasitic resistance. A modified FHA model is proposed for voltage gain analysis, and time-based models are used to calculate the instantaneous current required for the ZVS transition analysis. A method using charge instead of current is proposed and used for this ZVS analysis. Using this method, an auxiliary circuit is proposed to achieve complete ZVS within the whole load range, avoiding a gapped transformer design and increasing the efficiency and power density. A 28 Vdc output voltage prototype, with 10 kW peak output power, has been developed to validate the theoretical analysis and the proposed auxiliary circuit. The maximum efficiency (96.3%) is achieved at the nominal power of 5 kW.


Author(s):  
Michel Bouchon ◽  
Hayrullah Karabulut ◽  
Mustafa Aktar ◽  
Serdar Özalaybey ◽  
Jean Schmittbuhl ◽  
...  

Summary In spite of growing evidence that many earthquakes are preceded by increased seismic activity, the nature of this activity is still poorly understood. Is it the result of a mostly random process related to the natural tendency of seismic events to cluster in time and space, in which case there is little hope to ever predict earthquakes? Or is it the sign that a physical process that will lead to the impending rupture has begun, in which case we should attempt to identify this process. With this aim we take a further look at the nucleation of two of the best recorded and documented strike-slip earthquakes to date, the 1999 Izmit and Düzce earthquakes which ruptured the North Anatolian Fault over ∼200 km. We show the existence of a remarkable mechanical logic linking together nucleation characteristics, stress loading, fault geometry and rupture speed. In both earthquakes the observations point to slow aseismic slip occurring near the ductile-to-brittle transition zone as the motor of their nucleation.


2013 ◽  
Vol 9 (12) ◽  
pp. 5558-5566 ◽  
Author(s):  
William R. French ◽  
Amulya K. Pervaje ◽  
Andrew P. Santos ◽  
Christopher R. Iacovella ◽  
Peter T. Cummings

1995 ◽  
Vol 36 (4) ◽  
pp. 504-510 ◽  
Author(s):  
Yutaka Hiraoka ◽  
Hiroaki Kurishita ◽  
Minoru Narui ◽  
Hideo Kayano

1996 ◽  
Vol 233-237 ◽  
pp. 248-252 ◽  
Author(s):  
P. Gondi ◽  
R. Montanari ◽  
A. Sili ◽  
M.E. Tata

Sign in / Sign up

Export Citation Format

Share Document