Numerical Simulation Study of Soluble and Conservative Liquid Chemicals Diffusion in Tidal River

2013 ◽  
Vol 864-867 ◽  
pp. 1427-1432
Author(s):  
Jian Wei Zhang ◽  
Wan Qing Wu

Based on three-dimensional hydrodynamic model, moving boundary technique and embedded pollutant transport model, the concentration field of the soluble and conservative liquid chemicals spilled into the tidal river was calculated and the chemicals movement around a jetty at DA Liaohe was simulated. By analyzing the simulation results, the chemicals motion law with tide and their concentration field on and in water were deduced.

2013 ◽  
Vol 378 ◽  
pp. 418-423
Author(s):  
Gang Liu ◽  
Jia Wu ◽  
Wei Li

The three-dimensional construct of concentration field in an oscillatory flow reactor (OFR) containing periodically spaced conic ring baffles was investigated by numerical simulation employing Reynolds-averaged Navier-Stokes equations. The computation covered a range of Oscillatory Reynolds number (Reo) from 623.32 to 3116.58 at Strouhal number (St) 0.995 and 1.99. The contour of concentration field showed that the concentration in the most part of the channel is relative uniform and a small retention area is found below the conic ring baffles, which means a region of relative poor mixing. In addition, the turbulent diffusion coefficient calculated from the simulation results implied the greater oscillatory amplitude and oscillatory frequency superimposed to the fluid, the stronger is the turbulence intensity.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1156
Author(s):  
Wenjie Qi ◽  
Bowen Liu ◽  
Tian Liang ◽  
Jian Chen ◽  
Deyong Chen ◽  
...  

This paper presents a micro-electromechanical systems (MEMS)-based integrated triaxial electrochemical seismometer, which can detect three-dimensional vibration. By integrating three axes, the integrated triaxial electrochemical seismometer is characterized by small volume and high symmetry. The numerical simulation results inferred that the integrated triaxial electrochemical seismometer had excellent independence among three axes. Based on the experimental results, the integrated triaxial electrochemical seismometer had the advantage of small axial crosstalk and could detect vibration in arbitrary directions. Furthermore, compared with the uniaxial electrochemical seismometer, the integrated triaxial electrochemical seismometer had similar sensitivity curves ranging from 0.01 to 100 Hz. In terms of random ground motion response, high consistencies between the developed integrated triaxial electrochemical seismometer and the uniaxial electrochemical seismometer could be easily observed, which indicated that the developed integrated triaxial electrochemical seismometer produced comparable noise levels to those of the uniaxial electrochemical seismometer. These results validated the performance of the integrated triaxial electrochemical seismometer, which has a good prospect in the field of deep geophysical exploration and submarine seismic monitoring.


2014 ◽  
Vol 989-994 ◽  
pp. 982-985
Author(s):  
Jun Chen ◽  
Xiao Jun Ye

ANSYS-LS/DYNA 3D finite element software projectile penetrating concrete target three-dimensional numerical simulation , has been the target characteristics and destroy ballistic missile trajectory , velocity and acceleration and analyze penetration and the time between relationship , compared with the test results , the phenomenon is consistent with the simulation results. The results show that : the destruction process finite element software can better demonstrate concrete tests revealed the phenomenon can not be observed , estimated penetration depth and direction of the oblique penetration missile deflection .


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


2012 ◽  
Vol 588-589 ◽  
pp. 1355-1358
Author(s):  
Xiao Xing ◽  
Guo Ming Ye

During the splicing process of pneumatic splicer, the principle of yarn splicing is closely related to the flow field inside the splicing chamber. This paper presents a numerical simulation of the flow char-acteristics inside the splicing chamber of the pneumatic splicer. A three-dimensional grid and the realizable tur¬bulence model are used in this simulation. The numerical results of veloc¬ity vectors distribution inside the chamber are shown. Streamlines starting from the two air injectors are also acquired. Based on the simulation, the principle of yarn splicing of the pneumatic splicer is discussed. The airflow in the splicing chamber can be divided into three regions. In addition, the simulation results have well sup¬ported the principle of yarn splicing of pneumatic splicer claimed by the splicing chamber makers.


2014 ◽  
Vol 955-959 ◽  
pp. 3120-3124
Author(s):  
Kai Bian ◽  
Shi Lei Chen ◽  
Xue Yuan Li ◽  
Ying Wang Zhao

In order to figure out seepage field in aquifer under the coal seam, the geology and hydrogeology conditions systematically of study area were analyzed, hydrogeological conceptual model was generalized, mathematical model was built, seepage field of the Taiyuan limestone aquifer was simulated with software Feflow. Simulation results show that hydrogeological parameters of Taiyuan limestone aquifer change greatly in different partitions. The model also indicates the heterogeneity of karst fissure of Taiyuan limestone aquifer. The drainage quantity is from the Ordovician limestone aquifer besides supplying from runoff of upstream and capture excretion of downstream. The research is an attempt to simulate the seepage field in aquifer under coal seam, to some extent, it also provides a technical basis for safe coal mining and as a reference for simulation constructions of three-dimensional groundwater flow models in similar coal mines.


2013 ◽  
Vol 423-426 ◽  
pp. 1394-1397
Author(s):  
Ming Chang Li ◽  
Guang Yu Zhang ◽  
Qi Si ◽  
Shu Xiu Liang ◽  
Zhao Chen Sun

Based on the hydrodynamic model and wind field data, a multi-module coupled oil spill model is constructed for simulating the trajectory of oil movement. A case study is researched in Bohai Bay. The model works well and the numerical simulation results show the model is suitable for oil spill trajectory simulation. Two cases are considered with and without wind to show its important influence for the oil spill.


Author(s):  
Tiefei Li ◽  
Xueliang Chen ◽  
Zongchao Li

AbstractA three-dimensional multitransmitting formula is developed in ADINA to simulate the input of seismic waves and the scattering of infinite domains at the same time, consistent with the progress of the explicit finite element method of lumped mass. A three-dimensional cube model is built, and a delta pulse wave is input to compare the simulation results with the analytical solutions. The simulation results show that the peak error is 0.2% of the input wave, which meets the requirements of the usual numerical simulation. This method has a certain efficiency advantage in site effect analyses of fine models for localized fields. A velocity structure model of the Yuxi Basin is built, and the associated basin effect is studied by numerical simulation. The distribution of the focusing effect is related to the structure of the narrow east-west and wide north-south features in the Yuxi Basin, and the edge effect is related to the slope of the basin base. A distribution map is given of the amplification effect of ground motion in the basin.


Sign in / Sign up

Export Citation Format

Share Document