Microstructure and Tensile Behavior of Ti-Rich Ti-Ni-Cu Melt-Spun Ribbon

2014 ◽  
Vol 936 ◽  
pp. 1163-1167
Author(s):  
Wen Jun He ◽  
Guang Hui Min ◽  
Oleg Tolochko

Microstructure and mechanical properties of Ti51.5Ni25Cu23.5 ribbon fabricated by melt spinning were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and tensile tests. Some B19 martensite crystalline with (011) compound twin was embedded in the mainly amorphous ribbon, while the ribbon annealed at 450°C for 1 h is at fully martensitic state. Annealing process alter the preferential orientation from (022)-B19 to (111)-B19. Tensile fracture stresses of as-spun ribbon and the annealed ribbon are 1257 MPa and 250 MPa, respectively. The tensile fracture morphology of as-spun ribbon shows typical vein fringe while that of the annealed ribbon reveals fine but depth-inhomogeneous dimples. After tensile deformation, the annealed ribbon exhibits typical martensitic detwinning behavior accompanying with the strain contrast.

2021 ◽  
Vol 1016 ◽  
pp. 1368-1373
Author(s):  
Xiao Yun Song ◽  
Wen Jun Ye ◽  
Song Xiao Hui

The microstructures and shape memory behaviors of Ti-18Nb-6Zr (at.%) alloy subjected to different heat treatments were investigated through optical microscopy (OM), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and tensile tests. Recrystallization occurs in cold-rolled Ti-18Nb-6Zr alloy after solution treatment at 600~800 °C. The cooling rate after solution treatment at 800°C shows a dramatic effect on the microstructure of the alloy. The microstructures for the water quenching (WQ) and oil quenching (OQ) specimens are composed of single α'' martensite phase, while for the air cooling (AC) specimen, the microstructure consists of predominant β phase and a small amount of fine athermal ω phase. During tensile deformation, two-stage yielding is observed in the alloy subjected to 800°C/0.5h/WQ heat treatment. The stress for martensite variants reorientation and the yield stress for plastic deformation are 310MPa and 455MPa, respectievely, and the maximum shape memory strain of 3.1% is obtained with pre-strain of 6%.


2008 ◽  
Vol 8 (2) ◽  
pp. 722-727 ◽  
Author(s):  
Tae-hyun Nam ◽  
Cheol-am Yu ◽  
Jung-min Nam ◽  
Hyun-gon Kim ◽  
Yeon-wook Kim

Microstructures and deformation behaviour of Ti-45Ni-5Cu and Ti-46Ni-5Cu alloy ribbons prepared by melt spinning were investigated by transmission electron microscopy, thermal cycling tests under constant load and tensile tests. Spherical Ti2Ni particles coherent with the B2 parent phase were observed in the alloy ribbons when the melt spinning temperature was higher than 1773 K. Average size of Ti2Ni particles in the ribbons obtained at 1873 K was 8 nm, which was smaller than that (10 nm) in the ribbons obtained at 1773 K. Volume fraction of Ti2Ni phase in the ribbons obtained at 1873 K was 40%, which was larger than that (20%) in the ribbons obtained at 1773 K. The stress required at temperatures of Af + 10 K for the stress-induced martensitic transformation increased from 93 MPa to 229 MPa and apparent elastic modulus of the B2 parent phase increased from 56 GPa to 250 GPa with increasing the melt spinning temperature from 1673 K to 1873 K in Ti-45Ni-5Cu alloy ribbons. The critical stress for slip deformation of the ribbons increased by coherent Ti2Ni particles, and thus residual elongation did not occur even at 160 MPa, while considerable plastic deformation occurred at 60 MPa in the ribbons without Ti2Ni particles. Almost perfect superelastic recovery was found in the ribbons with coherent Ti2Ni particles, while only partial superelastic recovery was observed in the ribbons without coherent Ti2Ni particles.


2009 ◽  
Vol 67 ◽  
pp. 25-32 ◽  
Author(s):  
A.P. Srivastava ◽  
Dinesh Srivastava ◽  
K.G. Suresh ◽  
G.K. Dey

Effect of copper addition in a Metallic glass 2714A on the nanocrystallization characteristics have been examined in this study. Amorphous ribbon of the alloy composition Co64.5 Fe3.5 Si16.5 B13.5 Ni1Cu1 were prepared by melt spinning technique. Nanocrystallization kinetics was studied using differential scanning calorimeter technique. The kinetic parameters such as activation energy and Avrami exponent were determined using two different non-isothermal analysis methods. The kinetic behavior of individual crystallization event has been rationalized on the basis of these results. The role of addition of copper on the crystallization behavior has been understood by comparing with Metallic glass 2714A. The isothermally annealed nanocrystallized microstructures were characterized by X-ray diffraction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Stéphanie Delannoy ◽  
Sarah Baïz ◽  
Pascal Laheurte ◽  
Laurence Jordan ◽  
Frédéric Prima

The objective of this study was to develop a thermo-mechanical strategy to create a radial elasticity gradient in a β metastable Ti-Nb-Zr alloy, and to characterize it in terms of microstructural and mechanical properties. A first investigation was conducted on thin samples of Ti-20Nb-6Zr (at.%) submitted to various thermo-mechanical treatments. Microstructure-properties relationships and elastic variability of this alloy were determined performing uniaxial tensile tests, X-ray diffraction and scanning and transmission electron microscopies. Based on these preliminary results, mechanical deformation was identified as a potential way to lower the elastic modulus of the alloy. In order to create elastically graded pieces, shot-peening was therefore carried out on thicker samples to engender surface deformation. In this second part of the work, local mechanical properties were evaluated by instrumented micro-indentation. Experimental observations demonstrated that shot-peening enabled to locally induce martensitic transformation on surface, and a decrease in indentation elastic modulus from 85 to 65 GPa over 400 μm was highlighted. Surface deformation proved to be an efficient way of creating an elasticity gradient in β metastable titanium alloys. This combination of material and process could be suitable to produce dental implants with mechanically enhanced biocompatibility.


2011 ◽  
Vol 415-417 ◽  
pp. 1085-1089
Author(s):  
Tie Bao Wang ◽  
Chun Xiang Cui ◽  
Lin Fang ◽  
Shao Jing Bu

The microstructure of V-Nb inoculants after melt spinning was investigated by performing TEM examination and to the sample steels, the prior austenite grain sizes and fracture morphology were investigated by SEM observation. The results show that the V-Nb inoculants obtained is amorphous and the sample steel modified by V-Nb inoculants which make it possible to be a large amount of nucleation centers existing in the form of (V, Nb)C and achieve the effect of grain refinement in the solidification stages of liquid steel has been found to have the finest prior austenite grain sizes and the average prior austenite grain sizes of steel without addition of V and Nb(Steel A), steel microalloyed with V and Nb(Steel B) and steel modified by V-Nb inoculants(Steel C) are respectively 30μm, 20μm and 10μm. Tensile behavior of samples was studied under tempering at 400°C for 30 min after quenching, tensile results show that the fracture of steel modified by V-Nb inoculants appears dimples which represent ductile fracture. However the tensile fracture of V-Nb microalloyed steel is mixture of quasi-cleavages and dimples. Under tempering at 550°C for 30 min, Steel B and Steel C both show a fractograph with cleavage fracture.


2014 ◽  
Vol 543-547 ◽  
pp. 3733-3736
Author(s):  
Rong Hua Zhang ◽  
Biao Wu ◽  
Xiao Ping Zheng

In this study, 8009 heat resistant aluminum alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the alloy were studied using transmission electron microscopy, X-ray diffraction, and tensile tests. The secondary phases in the microstructure of the spray-deposited alloy were examined. The tensile test results indicate that the spray-deposited 8009 alloy both at room and elevated temperature displays superior tensile strength due to the presence of the thermally stable Al12(Fe,V)3Si particles.


2016 ◽  
Vol 849 ◽  
pp. 95-99
Author(s):  
Jing Hui Song

The Al-based amorphous ribbons were prepared by the copper roller melt spinning method, and then the laser brazing was carried out between aluminum alloy and aluminum alloy. Subsequently, the Micro Vickers Hardness Tester, Metallographic Microscope, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) were used to characterize the hardness, morphology, micro structure and composition distribution of the welded joints respectively, so as to analyze the structural characteristic, performance characteristic and binding effect of the matrix metal joints. The results indicate that the prepared Al-based amorphous ribbon is of amorphous structure, the soldering point between aluminum alloy and aluminum alloy is well-connected and the joint’s hardness is identical to that of the base metal. The connection between the metal sheets can be achieved by using Al-based amorphous ribbon as solder, which could provide concrete references for the development and application of amorphous brazing in various fields.


1989 ◽  
Vol 4 (3) ◽  
pp. 565-578 ◽  
Author(s):  
J. Cheng ◽  
M. Yuan ◽  
C. N. J. Wagner ◽  
A. J. Ardell

The intermetallic compounds NiTi, NiTi2, CuZr, CuTi2, and Zr3Al were irradiated by 2 McV protons at various temperatures between –175 °C and –44 °C to a fluence of 1.9 × 1022 H+/m2. Transmission electron microscopy, electron diffraction, and x-ray diffraction were used to evaluate the extents of disordering and amorphization induced by irradiation in the samples. Both phenomena progressed to varying extents in the five compounds, depending on the irradiation temperature and dose. It was observed that the C-A transition began before the degree of long-range order was reduced significantly, and that the amorphous phase nucleated homogeneously throughout the crystalline matrix. A major finding of the current investigation is that the technique of scanning electron fractography provides a useful correlation between the features of the fractured surfaces and the microstructural alterations induced by the proton irradiations. When amorphization is complete the fracture surfaces are either featureless (e.g., NiTi2) or contain branching features resembling river patterns. In some cases (especially in CuZr) these are similar to the markings seen on the surfaces of fractured amorphous ribbons produced by melt-spinning. In general, however, there is not a particularly good correlation between the features on the fracture surfaces of the irradiated and melt-spun ribbons. When the microstructure consists of amorphous regions embedded in a partially disordered crystalline matrix, there is considerable evidence for irradiation-induced ductility. In such cases, exemplified by the results on NiTi and Zr3Al, the fracture surfaces contain dimples, characteristic of ductile fracture, suggesting that disordering promotes ductility.


2014 ◽  
Vol 905 ◽  
pp. 41-46
Author(s):  
Muneer Al-Qadhi ◽  
Necar Merah

Epoxy-clay nanocomposites have been synthesized using organically modified montmorillonite nanoclay, Nanomer I.30E as nanoreinforcement in diglycidyl ether of bisphenol A (DGEBA) epoxy using ultrasonication. X-ray diffraction and TEM analysis showed that the interlayer spacing of clay increased as a result of sonication mixing. It was observed that the morphology of the resultant nanocomposites were dominated by disordered intercalated morphology with some ordered intercalated structure. Tensile tests results illustrated that while the addition of nanoclay increased the modulus of elasticity, noticeable reduction in strength and failure strain was observed. Fractographic analysis was curried out for the tensile fracture surfaces using SEM which illustrated that the roughness of the nanocomposites surface were high compared with the smooth surfaces of the pure epoxy indicating an improvement in the fracture toughness. It also demonstrated that during tensile loading for nanocomposites the cracks were initiated at either clay aggregates or microvoids which explained the reduction in strength for nanocomposites.


2014 ◽  
Vol 28 (20) ◽  
pp. 1450160
Author(s):  
Z. Hua ◽  
B. Zuo ◽  
Y. M. Sun ◽  
X. N. Wang ◽  
L. R. Dong ◽  
...  

Fe 78 Co 2 Zr 8 Nb 2B10-x Ge x (x = 0, 1, 2, 3) amorphous alloys were prepared by melt-spinning and annealed at different temperatures. The microstructures and magnetic property were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), respectively. The crystallization processes of Fe 78 Co 2 Zr 8 Nb 2 B 10 amorphous alloy at different quenching rates are similar and complex. The α- Fe ( Co ) and α- Mn type phases are observed in their initial stage of crystallization process. Hc increases with increasing annealing temperature in general. Only α- Fe ( Co ) phase is observed in the initial stage of the crystallization processes of Fe 78 Co 2 Zr 8 Nb 2 B 10-x Ge x (x = 0, 1, 2, 3) alloys. The change trend of coercivity is complex compared with Ge -free samples. The magnetic property of Fe 78 Co 2 Zr 8 Nb 2 B 7 Ge 3 is better.


Sign in / Sign up

Export Citation Format

Share Document