In Situ Characterization of Degradation Behavior of Plasma-Sprayed Coatings on Orthopedic and Dental Implants
Plasma-sprayed ‘HA’ coatings on commercial orthopedic and dental implants were developed to combine the strength of the metal (Ti or Ti alloy) and the bioactivity of the hydroxyapatite (HA). Several studies have shown that ‘HA’-coated implants provided greater amount of bone attachment, higher bone-implant interfacial strength and accelerated skeletal attachment. However, some reports on implant failures have been attributed to coating delamination and coating early resorption of the plasma sprayed ‘HA’ coating. This paper reviews studies on characterization and degradation of plasma-sprayed ‘HA’ coatings on orthopedic and dental implants and offers alternatives to plasma-spray method of providing calcium phosphate coating. X-ray diffraction analyses showed that plasma-sprayed HA coating consists principally of HA and amorphous calcium phosphate (ACP) with minor amounts of other resorbable calcium phosphates (α- or β-tricalcium phosphates, tetracalcium phosphate), sometimes calcium oxide. The HA/ACP ratios were found to range from 20HA/80ACP to 70HA/30ACP in coated implants from different manufacturers. In vitro initial dissolution rates in acidic buffer (pH 6, 37oC) increased with decreasing HA/ACP ratios in the coating because of the preferential dissolution of the ACP phase. These results suggest that coating with very low HA/ACP ratio may result in the premature resorption of the coating before the bone can attach to the implant thus causing loosening and eventual failure of the implant. Alternatives to plasma-sprayed ‘HA’ are implant surface modifications and low temperature calcium phosphate coatings using electrochemical deposition method or precipitation method.