Thermal Analysis in an Intermittent Ceramic Kiln

2018 ◽  
Vol 20 ◽  
pp. 124-142
Author(s):  
R. Soares Gomez ◽  
A.G. Barbosa de Lima ◽  
T.R. Nascimento Porto ◽  
J. Lacerda de Oliveira ◽  
Morgana Vasconcellos Araújo ◽  
...  

The ceramic products processing requires a high consumption of energy. Through the drying and firing stages, the molded product is subjected to high temperatures in a kiln, to obtain the product with required levels of rigidity and resistance. This energy consumption must be evaluated to improve the energy efficiency of the process. This work presents the fundamentals of ceramic materials processing and perform a thermal analysis in an intermittent ceramic kiln. This analysis is based on heat transfer measurements, that occur in the kiln during the ceramic production stages, and effects of the thermal insulation thickness on the heat transfer between the kiln and the environment. The results showed that a considerable amount of energy is used to heat the kiln surfaces, that the greatest heat loss occurs by radiation of the kiln walls and that the use of thermal insulation provides considerable reduction in this heat loss, as well as the reduction in kiln external temperature, which minimize thermal discomfort and work accident risks.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2104 ◽  
Author(s):  
Dorota Anna Krawczyk ◽  
Tomasz Janusz Teleszewski

This paper presents possible variants of reducing the heat loss in an existing heating network made from single pre-insulated pipes located in central Europe. In order to achieve this aim, simulations were carried out for five different variants related to the modification of the network operation temperature, replacement of a single network with a double pre-insulated one, and changes in the cross-section geometry of the thermal insulation of the double heating network from circular to egg-shaped. The proposed egg-shaped thermal insulation was obtained by modifying the shape of the Cassini oval, in that the supply pipe has a greater insulation thickness compared to the return pipe. The larger insulation field in the supply pipe contributed to reducing the heat flux density around the supply line and, as a result, to significantly reducing heat loss. The egg-shaped thermal insulation described in the publication in a mathematical formula can be used in practice. This work compares the heat losses for the presented variants and determines the ecological effect. Heat losses were determined using the boundary element method (BEM), using a proprietary computer program written as part of the VIPSKILLS 2016-1-PL01-KA203-026152 project Erasmus+.


2019 ◽  
Vol 10 (2) ◽  
pp. 59-66
Author(s):  
E. A Biryuzova ◽  
A. S Glukhanov

Through pipelines of heat networks, due to their large length, a large amount of thermal energy is lost. Identification of technical solutions related to improving the energy efficiency of heating networks is an urgent task at present. The article is devoted to the consideration of options for laying pipelines of heat networks during design work. In the conducted studies, two main methods of underground laying of pipelines of heat networks with the choice of the most energy-efficient, with minimal losses of thermal energy are considered. Channel and channelless laying methods are investigated with the same design features and technological conditions of operation of pipelines of heat networks using the same thermal insulation material. For each option, the required thickness of the thermal insulation is determined by the normalized density of the heat flow, thermal calculations are performed to determine the heat loss and the value of the temperature fields generated around the operating pipelines of the heat networks. The obtained values of the thermal insulation thickness in the channel method of laying pipelines are 30-50 % lower than those in channelless laying. The heat loss values, according to the results of the heat calculation for the options under consideration, in the channel method of laying are reduced by 47-65 %. The temperature fields formed around the pipelines of thermal networks with channelless laying significantly exceed the natural value of the soil temperature at the depth of the pipeline. What has a great influence on the determination of the distance to adjacent pipelines and other utilities, laid underground, in the zone of the thermal network. A comparative analysis of the results obtained makes it possible to single out the choice of the method of laying the pipeline into a group of measures aimed at energy saving and increasing energy efficiency in heating systems.


2011 ◽  
Vol 90-93 ◽  
pp. 3057-3060 ◽  
Author(s):  
Jian Jun Liu ◽  
Gui Hong Pei ◽  
You Jun Ji

Steam stimulation is one of the main methods used in heavy oil reservoir development. How to inject high temperature and high dryness steam is a key factor to enhance heavy oil recovery. It is significant to evaluate heat transfer of steam pipeline and optimize thermal insulation layer for heavy oil exploitation. Based on fluid mechanics, heat transfer theory, considered phase change, mathematical model to calculate heat transfer and heat loss of steam pipeline was derived. Using COMSOL Multiphysics, a finite element based program for simulating unlimited multiphysics and single physics applications, the author simulated heat transferring in ground steam pipeline and analyzed the effect of thermal insulation layer. From the simulation results, it was known that, (1) Along with the pipeline distance increases, the steam dryness decreases, the decrease rate decreases with the distance increases. (2) At the same transmission distance, the bigger the thermal insulation layer thickness is, the smaller the heat loss of the steam is. The heat loss of steam transmission mainly center on the first half pipeline. (3) With the thickness of thermal insulation layer increases, the heatloss declines. After the thickness of thermal insulation layer increases 90 mm, increasing the thickness has no obvious effect on reducing the heat loss. So, it is suggested that the thermal insulation layer thickness should be 75-80mm.


2017 ◽  
Vol 898 ◽  
pp. 1970-1977
Author(s):  
Yao Li ◽  
Xian Zheng Gong ◽  
Qing Hua Zhang ◽  
Chong Qi Shi

External wall thermal insulation system protects the major structure of building effectively. In this study, a student dormitory building with typical external wall thermal insulation system in Beijing was chosen as the research object and the energy consumption analysis was conducted to identify the optimal external thermal insulation system during the whole life cycle. The results show: for brick-concrete buildings, the consumption of clay brick, reinforced concrete and cement mortar account for more than 95% of the total materials consumption, where reinforced concrete contributes most to energy consumption. The external insulation system with similar heat transfer coefficient but consist of different insulation materials mainly affects energy consumption in materials production phase (the difference of building production energy consumption is about 7.2%), while has no significant effect in building operation phase and whole life cycle. With the increase of heat transfer coefficient, the energy consumption decreases in materials production phase, accounting for 16.3%-21.9% of the life cycle energy consumption, increases in building operation phase, accounting for 78.1%-83.7%, and can be neglected in the disposal phase. And there exists an optimization value in building whole life cycle, at which the minimum value of the energy consumption reaches, when the heat transfer coefficient is 0.3W / (m2 • K), equivalent to 127mm EPS insulation thickness or 151mm rock wool insulation thickness.


Author(s):  
Esam M. Alawadhi

This research studies the effectiveness of Phase Change Material (PCM) as a thermal insulation for a pipe. The objective of using PCM is to utilize its latent heat to minimize heat loss by absorbing heat loss from the pipe, which minimizes net heat loss from the pipe to the ambient. Finite element method is employed to solve the problem, and both conduction and natural convection of liquid PCM are considered as modes of heat transfer. The effectiveness of the PCM insulation is evaluated by comparing its thermal performance with insulation without phase change. The results indicate that the PCM is effective in reducing the heat loss from the pipe for low Rayleigh numbers condition. High resolution capturing of solid/liquid moving boundary, and the details of flow structure are presented.


2014 ◽  
Vol 488-489 ◽  
pp. 609-613 ◽  
Author(s):  
Dai Guo Chen ◽  
Yong Yao ◽  
Hai Jun Wang ◽  
Yu Ping Zhu ◽  
Jiao Li Zou

Foam concrete is a new building energy-saving material, which has the characteristics of light weight, heat insulation and fire prevention. The use of foam concrete slab with grooves cast roof or wall as a template can reduce the amount of the construction process, the cost of project and improve the structural thermal insulation properties. By testing the thermal defects and heat transfer performance of outer insulation and self-insulated wall, and analysis 2 kinds of wall’s heat transfer coefficient, thermal inertia indicators and technical and economic characteristics with Building Heat Transfer Theory, obtain : Foam concrete self thermal insulation wall indoor a hot environment, thermal stability and resistance against external temperature fluctuations is stronger; foam concrete self thermal insulation wall have a good heat transfer performance, and have better marketing prospects.


2013 ◽  
Vol 787 ◽  
pp. 731-735 ◽  
Author(s):  
Jose Vercher ◽  
Carlos Lerma ◽  
Marisol Vidal ◽  
Enrique Gil

Façade-slab connection is the main thermal bridge of buildings. In this work, different options are analyzed according to the location of the thermal insulation. Heat loss is measured for each option. According to thermal analysis performed we conclude that cover the buildings façade completely without interruption at the slabs front is essential to avoid thermal bridges. The new option that interrupts the cantilever to put insulation on the entire façade is just effective to isolate the entire cantilever and is an easier constructive solution. This insulation continuity is needed to prevent ceiling condensation, since the energy saving is not important compared to windows thermal loss.


2020 ◽  
Vol 9 (12) ◽  
pp. e20291211140
Author(s):  
Ricardo Soares Gomez ◽  
Túlio Rafael Nascimento Porto ◽  
Kelly Cristiane Gomes ◽  
João Alves de Lima ◽  
José Maurício Alves de Matos Gurgel ◽  
...  

The main purpose of this work is to perform a thermal analysis in an air conditioning duct to verify the influence of the thermal properties of the insulating material on the minimum thermal insulation thickness necessary to avoid the condensation of water vapor present in the air. The mathematical formulation is based on Fourier’s law and the first law of thermodynamics. A response surface, a contour plot and a mathematical model for the analyzed response variable, were obtained from an experimental design. Results indicate that the reduction of thermal conductivity and increase of emissivity of the insulating material contribute to the reduction of the minimum thermal insulation thickness.


2019 ◽  
Vol 9 (2) ◽  
pp. 3949-3954 ◽  
Author(s):  
F. A. AlFaraidy ◽  
S. Azzam

About half of the total generated electricity in Saudi Arabia (SA) is consumed for the air conditioning of residential buildings. To reduce this burden on the economy as outlined by the country's 2030 vision, the implementation of the Saudi energy conservation code (SBC602) needs to be enforced. This code divided KSA into three climate zones with maximum overall heat transfer coefficients. This study aims to facilitate the use of thermal insulation by analyzing optimum thermal insulation thickness for each zone and calculate the payback period of initial insulation costs. Three cities were selected to represent the three climate zones, Riyadh, Arar, and Turaif. The code-compliant thermal insulation thickness is calculated using these variables: thermal properties of three insulation materials, overall heat transfer coefficients, and three insulated wall structures. It is concluded that external insulation and finish system utilizing polyurethane is the most feasible option with the best thermal performance. Polyurethane thicknesses are ranging from 45mm to 65mm, wall widths are ranging from 250mm to 320mm, while the overall costs are ranging from 20.02 to 24.57 US$/m2. This system is used to conduct a comparison between energy-efficient-building and base-case-building in terms of cooling loads and electrical consumption using hourly-analysis-program (HAP) with international weather data. The simulated annual savings in energy consumption for the three zones are 67.4%, 66.56%, and 67.91%. The economic analysis shows promising payback years, which are 3.1, 3.9, and 4.3 for zone one, zone two and zone three respectively.


Sign in / Sign up

Export Citation Format

Share Document