Effect of TiC Content on Fracture Toughness of TiC-Ti5Si3 Composites

2007 ◽  
Vol 280-283 ◽  
pp. 1885-1888 ◽  
Author(s):  
Lian Jun Wang ◽  
Wan Jiang ◽  
Sheng Qiang Bai ◽  
Li Dong Chen

In-situ toughened TiC-Ti5Si3 composites were fabricated using reactive sintering of Ti and SiC via spark plasma sintering (SPS). The focus of this work on the content of TiC in final composites was different. The phase constituents and microstructures of the samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Fracture toughness at room temperature was also measured by indentation tests. The results showed that the corporation of TiC greatly enhances the fracture toughness of TiC-Ti5Si3 composites.

2018 ◽  
Vol 32 (03) ◽  
pp. 1850018 ◽  
Author(s):  
Kang Wang ◽  
Jing Feng ◽  
Zhen-Hua Ge ◽  
Peng Qin ◽  
Jie Yu

CuInSe2 powders were synthesized by solvothermal method, and then the CuInSe2/In2Se3 bulk samples were fabricated by spark plasma sintering (SPS) technique. To investigate the phase composition, the powders were determined by X-ray diffraction (XRD). The microstructures of the powders and bulk samples were observed by scanning electron microscopy (SEM). The transportation of the electronic properties and thermal conductivity were measured at room temperature to 700 K. According to the results, the CuInSe2 powders appeared in flower-like patterns which ranged from 3 [Formula: see text]m to 6 [Formula: see text]m. CuInSe2 powders were synthesized at 180[Formula: see text]C with a chalcopyrite structure. The Seebeck coefficient increased significantly in composite thermoelectric materials up to [Formula: see text] at 623 K. The thermal conductivity of the sample significantly decreases from the room temperature to 700 K. The CuInSe2 bulk composite by solvothermal method achieves the highest ZT value of 0.187 at 700 K.


2010 ◽  
Vol 654-656 ◽  
pp. 819-822
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui ◽  
Yuya Takahashi ◽  
Shota Fujino

In this study, we focused on the sintering performance of Ti-4.5Al-3V-2Mo-2Fe (SP-700) and mechanical properties of SP-700 reinforced with titanium boride (TiB/SP-700) fabricated by spark plasma sintering (SPS). TiB whiskers formed in titanium by a solid-state reaction of titanium and TiB2 particles were analyzed with scanning electron microscopy and X-ray diffraction. The TiB/SP-700 was sintered at temperatures of 1073, 1173, and 1273 K and a pressure of 70 MPa for 10, 30, and 50 min. The volume fraction of TiB ranged from 1.7 vol.% to 19.9 vol.%. Tensile tests of TiB/SP-700 were conducted at room temperature, and the effect of TiB volume fraction on the tensile properties was investigated.


2021 ◽  
Vol 1016 ◽  
pp. 1790-1796
Author(s):  
Maxim Syrtanov ◽  
Egor Kashkarov ◽  
Tatyana Murashkina ◽  
Nahum Travitzky

This paper describes the influence of sintering temperature on phase composition and microstructure of paper-derived Ti3AlC2 composites fabricated by spark plasma sintering. The composites were sintered at 100 MPa pressure in the temperature range of 1150-1350 °C. Phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The multiphase structure was observed in the sintered composites consisting of Ti3AlC2, Ti2AlC, TiC and Al2O3 phases. The decomposition of the Ti3AlC2 phase into Ti2AlC and TiC carbide phases was observed with temperature rise. The total content of Ti3AlC2 and Ti2AlC phases was reduced from 84.5 vol.% (1150 °C) to 69.5 vol.% (1350 °C). The density of composites affected by both the content of TiC phase and changes in porosity.


2012 ◽  
Vol 727-728 ◽  
pp. 982-987
Author(s):  
E. de Carvalho ◽  
Marcelo Bertolete ◽  
Izabel Fernanda Machado ◽  
E.N.S. Muccillo

Polycrystalline CaCu3Ti4O12 ceramics were prepared by solid state reactions by spark plasma sintering (SPS) technique. In this study, the effects of the dwell temperature on structural, microstructural and dielectric properties of CaCu3Ti4O12 ceramics have been investigated. Powder mixtures were calcined at 900°C for 18 h before SPS consolidation. The dwell temperatures were 850, 900, 915 and 930°C. Sintered pellets were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. X-ray diffraction patterns show evidences of a single-phase perovskite-type structure. The calculated lattice parameter is 7.40 Å. The hydrostatic density increases slightly with increasing dwell temperature. Scanning electron microscopy observations revealed a heterogeneous microstructure for all samples. The dielectric loss remains constant over a wide temperature range. The obtained permittivity is approximately 103 at 1 kHz. The increase of the dwell temperature is found to produce a brittle ceramic.


2004 ◽  
Vol 18 (01) ◽  
pp. 87-93 ◽  
Author(s):  
ZHIMIN WANG ◽  
YIDONG WU ◽  
YUANJIN HE

Crystals of MnSi 1.73 were prepared by Spark Plasma Sintering (SPS) technique, analyzed by X-ray diffraction (XRD), and invested by metalogragh and scanning electron microscopy (SEM). The growth processes of the samples were studied. It was found that the Mn–Si powders partly formed MnSi 1.73 crystals at 912–937 K under the mechanical pressure of 20 MPa in low vacuum (about 5.0 Pa), and fully formed MnSi 1.73 crystals after sintered at 1173 K for 15 minutes under 40 MPa.


2006 ◽  
Vol 6 (11) ◽  
pp. 3429-3432
Author(s):  
Chung-Hyo Lee ◽  
Seong-Hee Lee ◽  
Sung-Yong Chun ◽  
Sang-Jin Lee

A mixture of pure Mg and Si powders with an atomic ratio 2:1 has been subjected to mechanical alloying (MA) at room temperature to prepare the Mg2Si thermoelectric material. Mg2Si intermetallic compound with a grain size of 50 nm can be obtained by MA of Mg66.7Si33.3 powders for 60 hours and subsequently annealed at 620 °C. Consolidation of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800–900 °C under 50 MPa. The shrinkage of consolidated samples during SPS was significant at about 250 °C and 620 °C. X-ray diffraction data shows that the SPS compact from 60 h MA powders consolidated up to 800 °C consists of only nanocrystalline Mg2Si compound with a grain size of 100 nm.


2018 ◽  
Vol 8 (9) ◽  
pp. 1523 ◽  
Author(s):  
Lusha Tian ◽  
Yongchun Guo ◽  
Jianping Li ◽  
Feng Xia ◽  
Minxian Liang ◽  
...  

In the present paper, the microstructures of three kinds of in-situ reinforcements Al-Ti-C, Al-Ti-B, and Al-Ti-B-C-Ce were deeply investigated using a combination of scanning electron microscopy, X-ray diffraction spectroscopy, and transmission electron microscopy. The effect of in-situ reinforcements on the room temperature and elevated temperature (350 °C) tensile strengths of Al-13Si-4Cu-1Mg-2Ni alloy were analyzed. It is found that doping with trace amounts of B and Ce, the size of the Al3Ti phase in the in-situ reinforced alloy changed from 80 µm (un-reinforced) to about 10 µm, with the simultaneous formation of the AlTiCe phase. The Al-Ti-B-C-Ce reinforcement which is rapid solidified, was more effective and superior to enhance the tensile strengths of the Al-13Si-4Cu-1Mg-2Ni alloy, both at room and high temperatures than those of addition other reinforcements. The room temperature (RT) strength increased by 19.0%, and the 350 °C-strength increased by 18.4%.


2008 ◽  
Vol 587-588 ◽  
pp. 921-925 ◽  
Author(s):  
Sofia F. Marques ◽  
Raquel A. Silva ◽  
Jose Brito Correia ◽  
Nobumitsu Shohoji ◽  
Carmen M. Rangel

FeTi intermetallic powders are very promising media for reversible hydrogen storage. However, difficult activation treatments including annealing at elevated temperatures in high pressure H2 gas atmosphere are mandatory. In the present work nanostructured FeTi powders were produced and activated in situ at room temperature using mechanical alloying/milling (MA/MM) of pure metallic constituents, Fe and Ti, added with sodium borohydride. The resultant powders, FeTiHx, already H2 pre-charged, absorbed a significant amount of H2 but require optimization for reversible absorption/desorption. This system has one of the highest volumetric storage capacities and can be produced at low cost. Several parameters of the as-milled powders were controlled. The phase constitution of the reaction products was characterized by X-ray diffraction and scanning electron microscopy and the absorption isotherms of the activated powders were determined.


2012 ◽  
Vol 512-515 ◽  
pp. 932-935
Author(s):  
Ying Peng ◽  
Zhi Jian Peng ◽  
Xiao Yong Ren ◽  
Hui Yong Rong ◽  
Cheng Biao Wang ◽  
...  

TiCN-based cermets with different amounts of SiC nano-whiskers were prepared by spark plasma sintering. The microstructure and mechanical properties of the as-prepared cermets were investigated. X-ray diffraction revealed that there were no SiC peaks detected, turning out some peaks of new carbide and silicate hard phases. Scanning electron microscopy indicated that there were more and more pores in the cermets with increasing amount of SiC whisker added, and the fracture mechanism of the cermets was mainly inter-granular fracture. With increasing addition amount of nano-SiC whisker, the hardness and flexural strength of the cermets increased first and decreased then, presenting the highest hardness (2170 HV) and flexural strength (750 MPa), respectively, when the addition content of nano-whiskers is 2.5 wt%.


2015 ◽  
Vol 764-765 ◽  
pp. 51-55
Author(s):  
V.S. Balaji ◽  
S. Kumaran

Present study investigates the microstructural evolution and in-situ formation of Ti/(TiB+TiC) composite. The sintered compacts are having near theoretical density. The relative density of Ti/(TiB+TiC) composites decreases with increasing TiB and TiC content.The phase evolutions of TiB and TiC according to the in-situ reactions are analyzed by X-Ray diffraction technique (XRD). Optical microscope (OM) and Energy dispersive spectroscope (EDS) observations of the Ti/(TiB+TiC) composites shows the presence of TiC and TiB reinforcements as equiaxed and needle like structures respectively.


Sign in / Sign up

Export Citation Format

Share Document