A High-Order Curvature-Compensated Bandgap Voltage Reference for Micro-Gyroscope

2012 ◽  
Vol 503 ◽  
pp. 12-17
Author(s):  
Qiang Li ◽  
Xiao Yun Tan ◽  
Guan Shi Wang

The reference is an important part of the micro-gyroscope system. The precision and stability of the reference directly affect the precision of the micro-gyroscope. Unlike the traditional bandgap reference circuit, a circuit using a temperature-dependent resistor ratio generated by a highly-resistive poly resistor and a diffusion resistor in CMOS technology is proposed in this paper. The complexity of the circuit is greatly reduced. Implemented with the standard 0.5μm CMOS technology and 9V power supply voltage, in the range of -40~120°C, the temperature coefficient of the proposed bandgap voltage reference can achieve to about 1.6 ppm/°C. The PSRR of the circuit is -107dB.

2014 ◽  
Vol 989-994 ◽  
pp. 1165-1168
Author(s):  
Qian Neng Zhou ◽  
Yun Song Li ◽  
Jin Zhao Lin ◽  
Hong Juan Li ◽  
Chen Li ◽  
...  

A high-order bandgap voltage reference (BGR) is designed by adopting a current which is proportional to absolute temperature T1.5. The high-order BGR is analyzed and simulated in SMIC 0.18μm CMOS process. Simulation results show that the designed high-order BGR achieves temperature coefficient of 2.54ppm/°C when temperature ranging from-55°C to 125°C. The high-order BGR at 10Hz, 100Hz, 1kHz, 10kHz and 100kHz achieves, respectively, the power supply rejection ratio of-64.01dB, -64.01dB, -64dB, -63.5dB and-53.2dB. When power supply voltage changes from 1.7V to 2.5V, the output voltage deviation of BGR is only 617.6μV.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750127 ◽  
Author(s):  
Gongyuan Zhao ◽  
Mao Ye ◽  
Yiqiang Zhao ◽  
Kai Hu ◽  
Ruishan Xin

This paper presents a bandgap voltage reference (BGR), utilizing high order curvature-compensated technique with the temperature dependent resistor. Based on an improved error amplifier, [Formula: see text]80[Formula: see text]dB power supply rejection (PSR) @1[Formula: see text]kHz is achieved without additional complicated circuits. The circuit is fabricated in a standard [Formula: see text]m CMOS process, consuming 50[Formula: see text][Formula: see text]A at 25[Formula: see text]C with a supply voltage of 3.3[Formula: see text]V. Simulation results show that the proposed BGR can achieve a temperature coefficient as low as 1.18[Formula: see text]ppm/[Formula: see text]C over the temperature range from [Formula: see text]C to 120[Formula: see text]C. Monte Carlo simulation and Experimental Results validate the design.


Author(s):  
Kanan Bala Ray ◽  
Sushanta Kumar Mandal ◽  
Shivalal Patro

<em>In this paper floating gate MOS (FGMOS) along with sleep transistor technique and leakage control transistor (LECTOR) technique has been used to design low power SRAM cell. Detailed investigation on operation, analysis and result comparison of conventional 6T, FGSRAM, FGSLEEPY, FGLECTOR and FGSLEEPY LECTOR has been done. All the simulations are done in Cadence Virtuoso environment on 45 nm standard CMOS technology with 1 V power supply voltage. Simulation results show that FGSLEEPY LECTOR SRAM cell consumes very low power and achieves high stability compared to conventional FGSRAM Cell</em>


2004 ◽  
Vol 39 (1) ◽  
pp. 252-255 ◽  
Author(s):  
J. Doyle ◽  
Y.J. Lee ◽  
Y.-B. Kim ◽  
H. Wilsch ◽  
F. Lombardi

2018 ◽  
Vol 27 (08) ◽  
pp. 1850128 ◽  
Author(s):  
R. Nagulapalli ◽  
K. Hayatleh ◽  
Steve Barker ◽  
Sumathi Raparthy ◽  
Nabil Yassine ◽  
...  

This paper exploits the CMOS beta multiplier circuit to synthesize a temperature-independent voltage reference suitable for low voltage and ultra-low power biomedical applications. The technique presented here uses only MOS transistors to generate Proportional To Absolute Temperature (PTAT) and Complimentary To Absolute Temperature (CTAT) currents. A self-biasing technique has been used to minimize the temperature and power supply dependency. A prototype in 65[Formula: see text]nm CMOS has been developed and occupies 0.0039[Formula: see text]mm2, and at room temperature, it generates a 204[Formula: see text]mV reference voltage with 1.3[Formula: see text]mV drift over a wide temperature range (from [Formula: see text]40[Formula: see text]C to 125[Formula: see text]C). This has been designed to operate with a power supply voltage down to 0.6[Formula: see text]V and consumes 1.8[Formula: see text]uA current from the supply. The simulated temperature coefficient is 40[Formula: see text]ppm/[Formula: see text]C.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450107 ◽  
Author(s):  
JUN-DA CHEN ◽  
CHENG-KAI YE

This paper presents an approach to the design of a high-precision CMOS voltage reference. The proposed circuit is designed for TSMC 0.35 μm standard CMOS process. We design the first-order temperature compensation bandgap voltage reference circuit. The proposed post-simulated circuit delivers an output voltage of 0.596 V and achieves the reported temperature coefficient (TC) of 3.96 ppm/°C within the temperature range from -60°C to 130°C when the supply voltage is 1.8 V. When simulated in a smaller temperature range from -40°C to 80°C, the circuit achieves the lowest reported TC of 2.09 ppm/°C. The reference current is 16.586 μA. This circuit provides good performances in a wide range of temperature with very small TC.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2028
Author(s):  
Ruhaifi Bin Abdullah Zawawi ◽  
Hojong Choi ◽  
Jungsuk Kim

This paper presents a fully integrated voltage-reference circuit for implantable devices such as retinal implants. The recently developed retinal prostheses require a stable supply voltage to drive a high-density stimulator array. Accordingly, a voltage-reference circuit plays a critical role in generating a constant reference voltage, which is provided to a low-voltage-drop regulator (LDO), and filtering out the AC ripples in a power-supply rail after rectification. For this purpose, we use a beta-multiplier voltage-reference architecture to which a nonlinear current sink circuit is added, to improve the supply-independent performance drastically. The proposed reference circuit is fabricated using the standard 0.35 µm technology, along with an LDO that adopts an output ringing compensation circuit. The novel reference circuit generates a reference voltage of 1.37 V with a line regulation of 3.45 mV/V and maximum power-supply rejection ratio (PSRR) of −93 dB.


2013 ◽  
Vol 816-817 ◽  
pp. 882-886 ◽  
Author(s):  
Sonal Singhal ◽  
Rohit Singh ◽  
Amit Kumar Singh

This paper proposes a low power voltage reference generator in 0.18μm CMOS technology.The circuit presented here includes MOSFETs in sub threshold mode and uses the temperature dependence of threshold voltages and sub-threshold current of MOSFET to form a temperature-insensitive reference. An input supply voltage of 1.8 Volt is used for the circuit generating a total current of 1.33μA. By varying the device temperature over the range of-20°C to 100°C corresponding variation over the output voltage was found to lie in the range 397.8 to 400.2 mV. Thus a 0.6% variation in voltage over the considered range of temperature is obtained.


2018 ◽  
Vol 232 ◽  
pp. 04072
Author(s):  
XingGuo Tian ◽  
XiaoNing Xin ◽  
DongYang Han

In order to meet the market demand for wide temperature range and high precision bandgap voltage reference, this paper designs a bandgap reference with wide temperature range and low temperature coefficient. In this paper, the basic implementation principle of the bandgap reference is analyzed.On the basis of the traditional bandgap reference circuit structure,this design adds a trimming network and a temperature compensation network. A new Gaussian bell curve compensation technique is adopted to compensate the low temperature section, and the normal temperature section and the high temperature section respectively. Compared with the existing compensation technology, the versatility and the compensation effect is better. The designed circuit is designed and manufactured based on the Huahong HHNECGE0.35um process. The results show that the output voltage is 2.5V at 2.7V supply voltage and temperature range of -40-125°C.at typical process angle ,the temperature coefficient is 0.54618 PPm/°C,and is within 1PPm/°C at other process angles.


Sign in / Sign up

Export Citation Format

Share Document