Back-Side Thinning of Silicon Carbide Wafer by Plasma Etching Using Atmospheric-Pressure Plasma
Silicon carbide (SiC) power devices have received much attention in recent years because they enable the fabrication of devices with low power consumption. To reduce the on-resistance in vertical power transistors, back-side thinning is required after device processing. However, it is difficult to thin a SiC wafer with a high removal rate by conventional mechanical machining because its high hardness and brittleness cause cracking and chipping during thinning. In this study, we attempted to thin a SiC wafer by plasma chemical vaporization machining (PCVM), which is plasma etching using atmospheric-pressure plasma. The wafer level thinning of a 2-inch 4H-SiC wafer has been possible without a removal thickness distribution caused by the circular shape of the wafer using the newly developed PCVM apparatus for back-side thinning with a spatial wafer stage.