Effects of Changing Double Angles Configuration Used as Braces in Seismic Resisting Systems

2018 ◽  
Vol 763 ◽  
pp. 279-286
Author(s):  
Carlos Bermudez ◽  
Oscar Gutierrez

Seismic resisting systems consisting of double angles are used in many parts of the world. Generally, these double angles are arranged in the shape of a T, with a very small distance between them. However, sometimes these angles are distanced and faced in order to improve their mechanical characteristics about the axis of symmetry. In the past, their design was made in the same way as the double angles arranged in a T shape, that is, considering the limit states of flexural buckling and buckling by flexural-torsional, but ignoring the properties of the connectors and their effect on the modified slenderness ratio, as well as the fact that in this case the warping constant is not negligible. These parameters are taken into account in this research in order to study the effects of increasing the distance between the connectors and their possible use as braces in seismic resisting systems. The theoretical results were compared with the experimental results of fifty-seven specimens tested in the laboratory of structures of the Universidad Nacional de Colombia – Sede Manizales. The models were classified according to the main angles, the connectors, the total lengths, and the width of separation. All of them were subjected to axial compressive stress, with free rotation at both ends. Three identical specimens of each model were constructed. The flexural buckling length about x-axis was limited to two meters in all specimens tested whereas the flexural bucking length about y-axis and flexural-torsional buckling length were not limited, i.e. these lengths are equivalent to the total length of each specimen tested. This in order that the critical limit state was to be the flexural-torsional buckling as a function of the torsional buckling term in Z, except in the models of class 2 in which this induced condition was not reached. This was proposed to better evaluate the torsional buckling term in Z. The experimental results show that the nominal compressive strength for the flexural-torsional buckling limit state, when it is governed by torsion, is undervalued. A new methodology is proposed for the calculation of the nominal compressive strength for the flexural-torsional buckling limit state, when it is governed by torsion.

2011 ◽  
Vol 105-107 ◽  
pp. 1671-1676 ◽  
Author(s):  
Jaksada Thumrongvut ◽  
Sittichai Seangatith

In this paper, the experimental results on the fixed end supported PFRP channel beams subjected to three-point loading are presented. The aims of this study are to evaluate the effects of the span (L) on the structural behaviors, the critical buckling moments and the modes of failure of the beams, and to compare the obtained critical buckling moments with those obtained from the modified LFRD steel design equation in order to check the adequacy of the equation. The beam specimens have the cross-sectional dimensions of 76x22x6 mm, with span-to-depth ratio (L/d) ranging from 13 to 52. A total of twenty-six specimens were tested. Based on the experimental results, it was found that the loads versus mid-span vertical deflection relationships of the beams are linear up to the failure. On the contrary, the load versus mid-span lateral deflection relationships are geometrically nonlinear. The general modes of failure are the flexural-torsional buckling. Finally, the modified LFRD equation can satisfactorily predict the critical buckling moment for L/d exceeds 20. However, for L/d < 20, the equation overestimates the critical buckling moment of the beams and more development is needed.


2020 ◽  
Vol 31 (18) ◽  
pp. 2071-2087
Author(s):  
Majid Mohammadi Nia ◽  
Saber Moradi

Shape memory alloys have been used in developing self-centering steel moment connections. This article presents a numerical study aiming at evaluating the cyclic response sensitivity and limit states of extended endplate steel connections with shape memory alloy bolts. Three-dimensional finite element models are developed and validated against a recent experimental study. Using a statistical design-of-experiment method, the effects of 21 design factors and their interactions on the cyclic response of shape memory alloy connections are assessed. The sensitivity of six response parameters is studied. In addition, four limit states for shape memory alloy connections are discussed, including beam local buckling, bolt excessive axial strain, endplate yielding, and column flange yielding. Results show that endplate thickness, shape memory alloy bolt diameter, beam web slenderness ratio, and shape memory alloy maximum transformation strain are the most influential factors. Furthermore, endplate yielding is found to be the governing limit state in almost 80% of the analyzed connections, whereas shape memory alloy bolt excessive strain and column flange yielding are observed in less than 20% and 5% of the connections, respectively. Beam local buckling is not governing in the analyzed shape memory alloy connections designed as per the AISC 358-16 and AISC 341-16 seismic design requirements for extended endplate connections and highly ductile members.


2020 ◽  
Vol 23 (11) ◽  
pp. 2442-2457
Author(s):  
Noémi Seres ◽  
Krisztina Fejes

This article focuses on the lateral-torsional buckling resistance of girders with slender, class 4 cross-sections with a research aim to check the accuracy of the design resistance model of EN1993-1-1 and EN1993-1-5 on the coupled instability of lateral-torsional buckling and local plate buckling resistances. The current Eurocode-based design method considers in the effective cross-sectional resistance calculation that yield strength is reached in the extreme fibre of the cross-section, and the reduction factor [Formula: see text] related to local plate buckling is calculated based on this assumption. However, if lateral-torsional buckling occurs, maximum stress in the web can be significantly smaller at the ultimate limit state which is not considered in the effective cross-sectional resistance calculation. On the other side, EN1993-1-1 proposes to consider the effective bending moment resistance in the relative slenderness calculation of lateral-torsional buckling, which is in contradiction with the general definition of the relative slenderness ratio [Formula: see text], which should refer to the plastic resistance divided by the critical load of the structure. This article aims to check if the current Eurocode-based design rules need improvement and to check the effect of the above-mentioned specific issues on the calculated lateral-torsional buckling resistance. An extensive numerical research programme is executed to check and compare the lateral-torsional buckling resistance of class 3 (as reference) and class 4 cross-sections, and results are compared to Eurocode-based design models.


2013 ◽  
Vol 353-356 ◽  
pp. 3151-3154
Author(s):  
Jian Qin ◽  
Yong Jun Xia ◽  
Jin Miao Zhang ◽  
Chun Hua Hu

The flexural-torsional buckling of equal-leg angle member under compression is analyzed and calculated. Based on General bending theory and the section properties of angle, the governing equations of the spatial buckling are presented and the formula of Wagner effect coefficient is deduced. The method can also be used for beam-columns with any type section, and the computational efficiency is much higher than numerical methods. The critical buckling loads of equal-leg angle members with different sizes are calculated and the column curves of critical load and slenderness ratio are plotted which will guide efficiently the actual engineering design.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammad Aun Bashir

Concrete filled steel tube structures are becoming very popular in the modern civil engineering projects. Studying composite structures is useful, since it is an innovative and contemporary way to build structures. This type of structure has the ability to use respective strength of both steel and concrete due to confinement. Prefabrication of steel tube section is beneficial, and allows rapid installation into main structure. It also reduces the assembly cost and construction time. This paper will present the simple equation to predict the compressive strength of square concrete filled steel tube by using Finite Element Analysis (FEA)based software ABAQUs. In this study, 3D non-linear finite element models of short square composite columns were prepared using ABAQUS. The results were compared with published experimental tests of a concrete filled steel tube short columns. After getting the good agreement with the experimental results, a simple equation for the prediction of compressive strength is presented by considering the width to thickness ratio of steel tube. Results are validated with experimental results. The equation can predict the compressive strength only for the given material strengths and in future, the simple equation can be improved by considering different parameters e.g. material strength, slenderness ratio and end conditions.


2020 ◽  
Vol 982 ◽  
pp. 201-206
Author(s):  
Jaksada Thumrongvut ◽  
Natthawat Pakwan ◽  
Samaporn Krathumklang

In this paper, the experimental study on the pultruded fiber-reinforced polymer (pultruded FRP) angle beams subjected to transversely eccentric load are presented. A summary of critical buckling load and buckling behavior for full-scale flexure tests with various span-to-width ratios (L/b) and eccentricities are investigated, and typical failure mode are identified. Three-point flexure tests of 50 pultruded FRP angle beams are performed. The E-glass fibre/polyester resin angle specimens are tested to examine the effect of span-to-width ratio of the beams on the buckling responses and critical buckling loads. The angle specimens have the cross-sectional dimension of 76x6.4 mm with span-to-width ratios, ranging from 20 to 40. Also, four different eccentricities are investigated, ranging from 0 to ±2e. Eccentric loads are applied below the horizontal flange in increments until beam buckling occurred. Based upon the results of this study, it is found that the load and mid-span vertical deflection relationships of the angle beams are linear up to the failure. In contrast, the load and mid-span lateral deflection relationships are geometrically nonlinear. The general mode of failure is the flexural-torsional buckling. The eccentrically loaded specimens are failed at critical buckling loads lower than their concentric counterparts. Also, the quantity of eccentricity increases as buckling load decreases. In addition, it is noticed that span-to-width ratio increases, the buckling load is decreased. The eccentric location proved to have considerable influence over the buckling load of the pultruded FRP angle beams.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4008
Author(s):  
Zhengkai Feng ◽  
Heng Wang ◽  
Chuanjiang Wang ◽  
Xiujuan Sun ◽  
Shuai Zhang

Fused deposition modeling (FDM) has the advantage of being able to process complex workpieces with relatively simple operations. However, when processing complex components in a suspended state, it is necessary to add support parts to be processed and formed, which indicates an excessive dependence on support. The stress intensity of the supported positions of the printing components can be modified by changing the supporting model of the parts, their density, and their distance in relation to the Z direction in the FDM printing settings. The focus of the present work was to study the influences of these three modified factors on the stress intensity of the supporting position of the printing components. In this study, 99 sets of compression tests were carried out using a position of an FDM-supported part, and the experimental results were observed and analyzed with a 3D topographic imager. A reference experiment on the anti-pressure abilities of the printing components without support was also conducted. The experimental results clarify how the above factors can affect the anti-pressure abilities of the supporting positions of the printing components. According to the results, when the supporting density is 30% and the supporting distance in the Z direction is Z = 0.14, the compressive strength of the printing component is lowest. When the supporting density of the printing component is ≤30% and the supporting distance in the Z direction is Z ≥ 0.10, the compressive strength of printing without support is greater than that of the linear support model. Under the same conditions, the grid-support method offers the highest compressive strength.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Osama A. B. Hassan

Abstract This study investigates the stability of timber members subjected to simultaneously acting axial compression and bending moment, with possible risk for torsional and flexural–torsional buckling. This situation can occur in laterally supported members where one side of the member is braced but the other side is unbraced. In this case, the free side will buckle out of plane while the braced side will be prevented from torsional and flexural–torsional buckling. This problem can be evident for long members in timber-frame structures, which are subjected to high axial compression combined with bending moments in which the member is not sufficiently braced at both sides. This study is based on the design requirement stated in Eurocode 5. Solution methods discussed in this paper can be of interest within the framework of structural and building Engineering practices and education in which the stability of structural elements is investigated. Article Highlights This case study investigates some design situations where the timber member is not sufficiently braced. In this case, a stability problem associated with combined torsional buckling and flexural buckling can arise. The study shows that the torsional and/or flexural–torsional buckling of timber members can be important to control in order to fulfil the criteria of the stability of the member according to Eurocode 5 and help the structural engineer to achieve safer designs. The study investigates also a simplified solution to check the effect of flexural torsional buckling of laterally braced timber members.


2021 ◽  
Vol 164 ◽  
pp. 107821
Author(s):  
Ying Zhang ◽  
Yidu Bu ◽  
Yuanqing Wang ◽  
Zhongxing Wang ◽  
Yuanwen Ouyang

2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


Sign in / Sign up

Export Citation Format

Share Document