Texture Evolution of AA5052 during Monotonic and Reversed Hot Deformation and Subsequent Recrystallization

2002 ◽  
Vol 408-412 ◽  
pp. 1489-1494 ◽  
Author(s):  
Q. Zhu ◽  
Bradley P. Wynne ◽  
John H. Beynon ◽  
C.M. Sellars
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1278
Author(s):  
Chao Voon Samuel Lim ◽  
Yang Liu ◽  
Chen Ding ◽  
Aijun Huang

There is increasing usage of high strength Beta Ti alloy in aerospace components. However, one of the major challenges is to obtain homogeneous refined microstructures via the thermo-mechanical processing. To overcome this issue, an understanding of the hot deformation conditions effect on the microstructure, prior to and after annealing, is needed. In this work, the effect of strain levels, which is more precise than percentage of reduction, and strain rate under supra-transus deformation temperature on beta annealing are studied using a double cone sample. The Electron Backscattered Diffraction (EBSD) is used to determine the deformed microstructure and texture evolution, as well as the static recrystallized grains evolution using the ex situ annealing approach. This work provides evidence that the mechanisms of dynamic recovery and recrystallization, along with texture evolution, are affected by the deformation conditions, which in turn affected the subsequent static recrystallization during annealing. It will also be shown that high levels of strain do not necessarily lead to an increase in the rate of recrystallization. Finally, the results obtained provided several examples of guidance in designing the TMP processes for obtaining not only a refine microstructure, but a more homogeneous beta microstructure during the beta processing of Beta Ti alloy.


2012 ◽  
Vol 66 (3-4) ◽  
pp. 159-162 ◽  
Author(s):  
X. Li ◽  
F. Jiao ◽  
T. Al-Samman ◽  
S. Ghosh Chowdhury

2012 ◽  
Vol 28 (4) ◽  
pp. 437-447 ◽  
Author(s):  
M Sanjari ◽  
S A Farzadfar ◽  
I H Jung ◽  
E Essadiqi ◽  
S Yue

2020 ◽  
Vol 321 ◽  
pp. 12036
Author(s):  
Haoyuan Ma ◽  
Weidong Zeng ◽  
Xiongxiong Gao ◽  
Youping Zheng

In the present work, the hot deformation behavior, dynamic recovery, dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy on the conditions of 1100°C with four different thickness reductions (35%, 50%, 65% and 80%) are investigated by isothermal compression testing on Gleeble-3500 thermo-mechanical simulator. The strain rate is 0.1mm/s-1. Subsequently, metallographic observation and EBSD analysis are carried out. The results show that during the hot deformation, the dynamic recovery (DRV) and dynamic recrystallization (DRX) strongly affect the microstructure and texture evolution. It is observed that with the strain increasing, the intensity of ηbcc-fiber increases firstly (crystallographic fiber axis <100> parallel to the compression direction). When the thickness reduction reaches to 80%, the intensity of <001> pole becomes stronger expectedly. Whereas the ηbcc-fiber transform into cube components ({100} <001>) unexpectedly. In addition, as the strain increases through 35%-80%, the fraction of large misorientation grain boundaries and fraction of DRX grains gradually increase due to continuous recrystallization. The evolution mechanism of grain orientations and texture during the DRX process will be discussed.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2577 ◽  
Author(s):  
Yiwa Luo ◽  
Hanjie Guo ◽  
Jing Guo ◽  
Wensheng Yang

Fe-Co-Cr-Mo-W-V-C alloy is one of the most important materials for manufacturing drills, dies, and other cutting tools owing to its excellent hardness. However, it is prone to cracking due to its poor hot ductility during continuous hot working processes. In this investigation, the microstructure characteristics and carbide transformations of the alloy in as-cast and wrought states are studied, respectively. Microstructural observation and first-principles calculation were conducted on the research of types and mechanical properties of carbides. The results reveal that carbides in as-cast Fe-Co-Cr-Mo-W-V-C alloy are mainly Mo2C, VC, and Cr-rich carbides (Cr7C3 and Cr23C6). The carbides in wrought Fe-Co-Cr-Mo-W-V-C alloy consist of Fe2Mo4C, VC, Cr7C3, and a small amount of retained Mo2C. For these carbides, Cr7C3 presents the maximum bulk modulus and B/G values of 316.6 GPa and 2.48, indicating Cr7C3 has the strongest ability to resist the external force and crack initiation. VC presents the maximum shear modulus and Yong’s modulus values of 187.3 GPa and 465.3 GPa, which means VC can be considered as a potential hard material. Hot isothermal compression tests were performed using a Gleeble-3500 device to simulate the flow behavior of the alloy during hot deformation. As-cast specimens were uniaxially compressed to a 70% height reduction over the temperature range of 1323–1423 K and strain rates of 0.05–1 s−1. A constitutive equation was established to characterize the relationship of peak true stress, strain rate, and deformation temperature of the alloy. The calculated results were in a good agreement with the experimental data. In order to study the texture evolution, the microstructures of the deformed specimens were observed, and an optimal deformation temperature was selected. Using the laboratorial optimal temperature (1373 K) in forging of an industrial billet resulted in uniform grains, with the largest size of 17 µm, surrounded by homogenous spherical carbides.


Sign in / Sign up

Export Citation Format

Share Document