High Tensile Strength of Drawn Gold

2005 ◽  
Vol 495-497 ◽  
pp. 907-912 ◽  
Author(s):  
Suk Hoon Kang ◽  
Hee Suk Jung ◽  
Woong Ho Bang ◽  
Jae Hyung Cho ◽  
Kyu Hwan Oh ◽  
...  

This paper studies the microstructure of drawn gold wires to equivalent strain of 10 and to equivalent strain of 8.5 then heat-treated. The texture of gold wire drawn to strain of 10 is mainly composed of <100> and <111> fibers. Tensile strength of the gold wire increases with <111> fiber fraction, while the grain size does not appear to affect the tensile property. With an exception at heat treatment at 600oC, the texture of gold wire drawn the strain of 8.5 is replaced with <100> fiber component by heat treatment process at 400~700oC. Heat treatment at 600oC produces <110> fiber or <112> fiber, depending upon annealing time.

2013 ◽  
Vol 747-748 ◽  
pp. 251-256 ◽  
Author(s):  
Yan Chang Zhang ◽  
Sha Luo ◽  
Qing Qing Zhang ◽  
Xiao Qing Xu ◽  
Tie Tao Zhou

In this paper, a new biomedical Mg-Li alloy for the improvement of the comprehensive mechanical properties by micro-alloying and processing to meet the need of mechanical properties of biomedical materials. And the Mg-Li (Mg-Li-Al-Zn-Ca-Sr) alloy's processing and heat treatment were investigated in detail. The crystal texture of cast state, forged state and rolled state were observed and analyzed by OM, XRD and SEM. The mechanical properties of every stage were tested as well. The results showed that the grain size was refined obviously by the concentrating of Ca and Sr in the grain boundary. With the increase of rolling lane, the second phase's distribution was changed to a scattered state gradually from the reunion state. The tensile strength of the forged alloy was improved as well as its elongation after cold rolling and with rolled heat treatment process. The tensile strength reached 220MPa and the elongation reach 22%, which might meet the demand of cardiovascular stents mechanics.


Author(s):  
Praveen Singh ◽  
Satnam Singh ◽  
Sanchit Mewar

A simple approach of two-step intercritical heat treatment has been employed to study the effect of heat treatment on the evolution of microstructures and their effect on the mechanical properties of alloy steel (AISI 1012). The selected steel samples were directly placed in the preheated furnace and were progressively heat treated in two steps, intercritically between the Ac1–Ac3 temperature range. Immediate water quenching (preheated at 30 ℃) was carried out after heat treatment cycles. The processed steels were characterized by examining the X-ray diffraction patterns, microstructures, Vickers microhardness, and tensile strength. The normalized X-ray diffraction results of heat-treated steels revealed the substantial growth in the martenistic phases. The microstructures of heat-treated steel revealed the formation of needle-shape-like structures, which corresponds to the martenistic phase. The increased formation of martenistic phase due to the intercritical heat treatment process improved the overall microhardness (from 188 ± 9 HV of the parent steel to 412 ± 32 HV for 800 ℃ heat-treated steel) up to 2.2 times. The presence of soft and ductile (ferritic and pearlite) phases simultaneously with tough and strong (martenistic) phase allowed the improvement in the ultimate tensile strength. In comparison to parent steel with tensile strength of 510 ± 15 MPa, the intercritical heat treatment steel at 800 ℃ revealed 169.6% higher tensile strength of 1375 ± 35 MPa. However, percentage elongation was reduced by 60%, i.e. from 13 ± 1% for parent steel to 5.2 ± 2% of intercritical heat treatment steel (processed at 800 ℃). An overall study revealed that by a proper intercritical heat treatment process, dual-phase steels with better structure–properties correlation can be obtained for industrial applications.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 906-913 ◽  
Author(s):  
LIANYONG ZHANG ◽  
YANHUA JIANG ◽  
ZHUANG MA ◽  
WENKUI WANG

Phase Transition Cooling (PTC), using the absorbed latent heat during the melting of phase transition cooling medium to cool and solidify alloys in the process of casting, is a new casting technology. Specimens of A356 casting aluminum alloy were prepared by this method in the paper. The new heat treatment process (cast and then aging directly without solid solution) of A356 alloy was performed. For comparison, the conventional T6 heat treatment (solution and then aging treatment) was performed too. The mechanical properties of A356 alloy with different heat treatments were measured by tensile strength testing methods and microstructures of the alloy with different heat treatment process were investigated by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-rays diffraction (XRD) and transmission electron microscopy (TEM) too. The results show that ultimate tensile strength (UTS) of A356 alloy with the new heat treatment process is much higher than that with conventional heat treatment while the elongations with the two heat treatment processes are very close. This is due to the grain refinement obtained after PTC processing.


Author(s):  
J. Arun Prakash ◽  
P. Shanmughasundaram ◽  
M. Vemburaj ◽  
P. Gowtham

This work deals with the examination of the mechanical properties of Aluminium (LM6) reinforced with iron oxide (Fe2O3). Stir casting process is used to formulate the composite sampling by varying iron oxide in 5% and 10% by weight. Three different heat treatment process of hardening, annealing and normalizing is carried out on samples of aluminium (LM6), aluminium (LM6) + 5% Fe2O3 and aluminium (LM6) + 10% Fe2O3. Composite specimens are tested to analyze the mechanical properties such as hardness, yield stress, tensile strength and elongation. Present reinforcement specks enabled the alloy to preserve higher hardness during the heat treatment. Results have shown substantial improvements in properties of the specimens with various compositions of reinforcement.


2017 ◽  
Vol 898 ◽  
pp. 1705-1711 ◽  
Author(s):  
Jun Zhe Li ◽  
Xun Sun ◽  
Hai Tao Liu ◽  
Hai Feng Cheng ◽  
Xiao Shan Zhang

The composition and microstructure of silicon nitride fibers after heat-treatment at elevated temperatures were investigated by XRD, NMR, XPS, SEM and TEM analyses. The results show that as-received fibers consisted of amorphous silicon nitride, and a little Si-C-O structure. During heat-treatment process, α-Si3N4 and β-Si3N4 formed resulting from the crystallization of amorphous silicon nitride, and the formation of β-SiC derived from the decomposition of Si-C-O structure. As heat-treated temperature increased from 1400oC to 1600oC, the above phenomenon become obvious, indicating that the fiber would possess high serving life with serving temperature lower than 1400oC. The tensile strength of fibers stays stable when heat-treated temperature was below 1200oC, while the strength retention of fibers sharply decreased to 50% after heat-treatment at 1400°C.


2015 ◽  
Vol 727-728 ◽  
pp. 322-326 ◽  
Author(s):  
Shi Lu Zhao ◽  
Zhen Zhang ◽  
Lian Chong Qu ◽  
Jun Zhang ◽  
Jian Ming Wang ◽  
...  

Effects of heat treatment process of quenching and tempering under different temperature conditions on mechanical properties of X70 grade pipeline steel bends were studied. Brinell hardness, yield strength, tensile strength, elongation and impact absorbing energy of the bends were tested by using hardness tester, cupping machine and impact testing machine, respectively. It shows that the best heat treatment process of the X70 grade pipeline steel bends is quenching at 890 °Cand thermal insulation for 26 min then water cooling followed by tempering at 590 °C and thermal insulation for 60 min then air cooling. Furthermore, the resulting hardness, yield strength, tensile strength, yield ratio, elongation and impact absorbing energy reach HB230, 595 MPa, 725 MPa, 0.82, 28% and 300 J respectively, which has excellent comprehensive mechanical properties.


2018 ◽  
Vol 929 ◽  
pp. 56-62 ◽  
Author(s):  
Hasan Akhyar ◽  
Priyo Tri Iswanto ◽  
Viktor Malau

In this experiment, the influence of non-treated (NT), natural aging (T4) and artificial aging (T6) heat-treatments was investigated on the tensile strength of Al-5.9Cu-1.9Mg at different casting temperatures. Three levels of casting temperatures were used: 688, 738, 788 °C while the mold temperature was kept constant at 220 °C. The cast sample was heat-treated by natural aging and artificial aging techniques. The results show that the tensile strength in the non-treated sample decreases initially and then rises slightly with increasing casting temperature. The effect of casting temperature on T4 involved first an increase in tensile strength and then a decrease when elevating the casting temperature, but with no significant effect. In the T6 treatment, the tensile strength first decreases followed by a slight increase with increasing casting temperature. The heat treatment process improved the tensile strength in the three different samples, except at a casting temperature of 768 °C.


2014 ◽  
Vol 622-623 ◽  
pp. 1075-1080 ◽  
Author(s):  
Kota Sakumoto ◽  
Kazuhiko Yamazaki ◽  
Takashi Kobayashi ◽  
Shinsuke Suzuki

We investigated punching properties (crack in punched surface and hole expansion ratio) of high tensile strength steel sheets with and without center segregation. High strength steel sheets were heat-treated to reduce center segregation. Tensile strength, shear surface ratio, depth of rollover and burr height were measured on heat-treated steel sheets to confirm the effect of heat-treatment on strength. The EPMA analysis showed that the center segregation of Mn was reduced by the diffusion during heat-treatment. Crack-formation frequency and hole expansion ratio were also measured. As a result, the center segregation of Mn in high tensile strength steel sheets decreased by the heat-treatment (600 oC for 100 h) with maintaining the tensile strength, the depth of rollover and the burr height. The crack-formation frequency of the steel sheets decreased through heat-treatments.


2014 ◽  
Vol 1061-1062 ◽  
pp. 454-459
Author(s):  
An Min Li ◽  
Ding Ma ◽  
Qi Feng Zheng ◽  
Ruo Huai Chen ◽  
Qiang Li ◽  
...  

The as-cast grate bar structure used in sintering trolley is primarily comprised of austenite and eutectic (eutectic austenite and eutectic carbide).The austenite is dendrite, while the carbides are reticular and chrysanthemum-like. The failed grate bar structure primarily consists of ferrite, carbide, martensite and residual austenite; cavity shrinkage and shrinkage porosity exist in the structure, and the fracture exhibits typical cleavage fracture characteristics. The primary means of failure are abrasion and fracture. The secondary carbides precipitated in the sample (quenching (1050°C+2.5h)+ tempering (390°C+2.5h)) and the other one (quenching (1050°C+2.5h)+ tempering (420°C+2.5h) ) are dispersed and refined. Compared with the as-cast one, their relative abrasion resistance performances respectively are 0.8645 and 0.8752.The values of hardness and impact toughness of the samples heat-treated are greater than those of the as-cast grate bar. The optimum heat treatment process is as follows: quenching (1050°C,2.5h) + tempering (390°C~420°C,2.5h)


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 157 ◽  
Author(s):  
Jun Zhang ◽  
Ziming Kou ◽  
Yaqin Yang ◽  
Baocheng Li ◽  
Xiaowen Li ◽  
...  

High damping magnesium alloys have poor mechanical properties, so it is necessary to investigate the damping properties of high-strength wrought magnesium alloys to effectively reduce vibration and noise in mechanical engineering. The aim of this work is to improve the mechanical damping performance of a novel high-strength Mg-13Gd-4Y-2Zn-0.5Zr magnesium alloy by optimising the heat treatment process. The mechanical damping coefficient, considering not only damping capacity but also the yield strength, is selected as one of the evaluation indexes. The other evaluation index is the tensile strength. The solid solution and ageing treatment were optimised by Box-Behnken method, an efficient experimental design technique. Heat treatment experiments based on the optimal parameters verified that the best process is a solution at 520 °C for 10 h followed by ageing at 239 °C for 22 h. The damping coefficient reaches 0.296, which is 73.1% higher than that before heat treatment. There was a good agreement between the experimental and Box-Behnken predicted results. The microstructure, morphology and composition of the second phases after heat treatment were analysed by SEM, XRD and EDS. Due to the high content of alloying elements in Mg-13Gd-4Y-2Zn-0.5Zr alloy, there are a large number of second phases after heat treated. They mainly include layer, short rod-shaped, bulk long period stacking order (LPSO) Mg12YZn and granular Mg5Gd phases. It was found that the area fraction of the second phases has an extreme effect on the damping capacity and short rod-shaped LPSO can effectively improve the damping capacity of heat-treated Mg-13Gd-4Y-2Zn-0.5Zr alloy. The volume fraction of the second phases was analysed by ImageJ software. It was concluded that the smaller the area occupied by the second phases, the better the mobility of the dislocation, and the better the damping performance of the alloy. The statistical analysis results obtained using ImageJ software are consistent with the experimental results damping capacity.


Sign in / Sign up

Export Citation Format

Share Document