Investigations on Edge Chipping in Rotary Ultrasonic Machining Using Finite Element Analysis

2006 ◽  
Vol 532-533 ◽  
pp. 969-972 ◽  
Author(s):  
Yu Chen ◽  
Zhi Jian Pei ◽  
Clyde Treadwell

This paper reports two investigations on the edge chipping in rotary ultrasonic machining using finite element analysis (FEA). The first FEA investigation establishes a relationship between edge chipping thickness and cutting force. The second FEA investigation is to understand the effects of three parameters (cutting depth, support length, and pre-tightening load) on edge chipping thickness. The investigation results showed that the edge chipping thickness could be reduced by increasing support length and decreasing cutting force.

Author(s):  
Márcio Araújo ◽  
Valter E. Beal ◽  
Armando Sá Ribeiro Júnior ◽  
Luis Antônio Gonçalves Junior

Author(s):  
Varatharajan Prasannavenkadesan ◽  
Ponnusamy Pandithevan

Abstract In orthopedic surgery, bone cutting is an indispensable procedure followed by the surgeons to treat the fractured and fragmented bones. Because of the unsuitable parameter values used in the cutting processes, micro crack, fragmentation, and thermal osteonecrosis of bone are observed. Therefore, prediction of suitable cutting force is essential to subtract the bone without any adverse effect. In this study, the Cowper-Symonds model for bovine bone was developed for the first time. Then the developed model was coupled with the finite element analysis to predict the cutting force. To determine the model constants, tensile tests with different strain rates (10−5/s, 10−4/s, 10−3/s, and 1/s) were conducted on the cortical bone specimens. The developed material model was implemented in the bone cutting simulation and validated with the experiments.


Author(s):  
Palamandadige Fernando ◽  
Meng Zhang ◽  
Zhijian Pei ◽  
Adam Owens

Abstract The aim of this study is to investigate the edge chipping and surface roughness of basalt rock processed by rotary ultrasonic machining (RUM) using compressed air as coolant. Basalt rock is commonly used as a building and construction material for foundations and dams, as well as in architectural designs such as constructing thin veneers and facades. Rotary ultrasonic machining, a hybrid process of grinding and ultrasonic machining, is employed to drill difficult-to-machine materials such as ceramics, composites, titanium alloys, stainless steel, etc. RUM has many advantages over conventional machining processes such as twist drilling. These advantages include lower cutting force, higher surface quality, lower tool wear, etc. This paper is the first in literature to report a study on edge chipping and surface roughness on RUM of basalt rock using cold compressed air as coolant. The effects of three input variables (tool rotation speed, feedrate, and ultrasonic power) on cutting force, torque, edge chipping, and surface roughness were studied. Experimental results obtained from this investigation show that RUM with cold air as the coolant has the capability to machine holes in basalt rock with a surface roughness of less than 3.5 μm without severe edge chipping.


2011 ◽  
Vol 86 ◽  
pp. 100-103
Author(s):  
Qian Guo ◽  
Chao Lin ◽  
Wei Quan

This paper makes the emulate experimental research of cutting force in high-speed dry gear milling by flying cutter with finite element analysis method by using the established cutting force model yet, makes the comparative analysis for the result of simulation experiment and theoretical calculation, verifies the correctness of cutting force model and calculation method, makes the comparative analysis for the influencing relations and changing laws of cutting force and cutting parameters and so many factors, and reveals the cutting mechanism of high-speed dry gear milling by flying cutter initially. By the research of this paper, it provides basic theory for subsequent cutting machine technology of high-speed dry gear hobbing, and establishes the theoretical basis for the spread and exploitation of this technology.


Author(s):  
Hu Gong ◽  
F. Z. Fang ◽  
X. F. Zhang ◽  
Juan Du ◽  
X. T. Hu

Edge chipping is one of the most serious issues during machining process of brittle materials. To find an effective method to reduce edge chipping, the relationship between the distribution of maximum principal stress and edge chipping is studied comprehensively based on 3D finite element analysis (FEA) model of in-process workpiece structure in this paper. Three-level influencing factors of edge chipping are proposed, which are helpful to understand the relationship between intuitive machining parameters and edge chipping at different levels. Based on the analysis, several experiments are designed and conducted for drilling and slotting to study the strategy of controlling edge chipping. Two methods are adopted: (a) adding additional support, (b) improving tool path. The result show that edge chipping can be reduced effectively by optimizing the distribution of the maximum principal stress during the machining process. Further, adding addtitional support method is extended to more complex parts and also obtain a good result. Finally, how to use adding additional support method, especially for complex parts, will be discussed in detail. Several open questions are raised for future research.


Sign in / Sign up

Export Citation Format

Share Document