Heusler Type CoNiGa Alloys with High Martensitic Transformation Temperature

2007 ◽  
Vol 546-549 ◽  
pp. 2241-2244 ◽  
Author(s):  
Yun Qing Ma ◽  
Cheng Bao Jiang ◽  
Yan Li ◽  
Cui Ping Wang ◽  
Xing Jun Liu

A strong need exists to develop new kinds of high-temperature shape-memory alloys. In this study, two series of CoNiGa alloys with different compositions have been studied to investigate their potentials as high-temperature shape-memory alloys, with regard to their microstructure, crystal structure, and martensitic transformation behavior. Optical observations and X-ray diffractions confirmed that single martensite phase was present for low cobalt samples, and dual phases containing martensite and γ phase were present for high cobalt samples. It was also found that CoNiGa alloys in this study exhibit austenitic transformation temperatures higher than 340°C, showing their great potentials for developing as high-temperature shape-memory alloys.

2015 ◽  
Vol 833 ◽  
pp. 67-70
Author(s):  
Shui Yuan Yang ◽  
Cui Ping Wang ◽  
Yu Su ◽  
Xing Jun Liu

The evolutions of microstructure and phase transformation behavior of Cu-Al-Fe-Nb/Ta high-temperature shape memory alloys under the quenched and aged states were investigated in this study, including Cu-10wt.% Al-6wt.% Fe, Cu-10wt.% Al-4wt.% Fe-2wt.% Nb and Cu-10wt.% Al-4wt.% Fe-2wt.% Ta three types alloys. The obtained results show that after quenching, Cu-10wt.% Al-6wt.% Fe alloy exhibits two-phase microstructure of β′1 martensite + Fe (Al,Cu) phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy also has two-phase microstructure of (β′1 + γ′1 martensites) + Nb (Fe,Al,Cu)2 phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Ta alloy is consisted of three-phase of (β′1 + γ′1 martensites) + Fe (Al,Cu,Ta) + Ta2(Al,Cu,Fe)3 phases. However, α (Cu) phase precipitates after aging for three alloys; and Fe (Al,Cu,Nb) phase is also present in Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy. All the studied alloys exhibit complicated martensitic transformation behaviors resulted from the existence of two types martensites (β′1 and γ′1).


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1531
Author(s):  
Yoko Yamabe-Mitarai

In this paper high-temperature shape memory alloys based on TiPd and TiPt are reviewed. The effect of the alloying elements in ternary TiPd and TiPt alloys on phase transformation and strain recovery is also discussed. Generally, the addition of alloying elements decreases the martensitic transformation temperature and improves the strength of the martensite and austenite phases. Additionally, it also decreases irrecoverable strain, but without perfect recovery due to plastic deformation. With the aim to improve the strength of high-temperature shape memory alloys, multi-component alloys, including medium- and high-entropy alloys, have been investigated and proposed as new structural materials. Notably, it was discovered that the martensitic transformation temperature could be controlled through a combination of the constituent elements and alloys with high austenite finish temperatures above 500 °C. The irrecoverable strain decreased in the multi-component alloys compared with the ternary alloys. The repeated thermal cyclic test was effective toward obtaining perfect strain recoveries in multi-component alloys, which could be good candidates for high-temperature shape memory alloys.


2015 ◽  
Vol 1101 ◽  
pp. 177-180 ◽  
Author(s):  
Saif Ur Rehman ◽  
Mushtaq Khan ◽  
Liaqat Ali ◽  
Syed Husain Imran Jaffery

Formation of Ni4Ti3 precipitates during aging of Ni-rich binary NiTi shape memory alloys and its effect on transition behavior during transformation from austenite to martensite phase has been studied extensively. However for equi-atomic NiTi-based quaternary high temperature shape memory alloy, two-stage martensitic transformation was detected for the first time. The Ti50Ni15Pd25Cu10 high temperature shape memory alloys were investigated for the hardness and transformation temperatures at aging temperature of 550°C. Aging at 550°C for 6 h resulted in remarkable increase in the hardness, whereas the phase transformation temperatures decreased significantly. During forward transformation from austenite to martensite, two-stage martensitic transformation; B2 (cubic) → R-phase and R-phase → B19 (orthorhombic) was observed.


2017 ◽  
Vol 28 (19) ◽  
pp. 2835-2852
Author(s):  
Josiah S Owusu-Danquah ◽  
Atef F Saleeb

A multi-mechanism material model is used to investigate the effect of the degree of martensitic detwinning/reorientation occurring at the end of mechanical preloading, on the performance of shape memory tubular and solid cylindrical actuators. A high-temperature ternary Ni50.3Ti29.7Hf20 alloy, showing almost complete transformation behavior, and an ordinary binary Ni49.9Ti50.1 material, depicting incomplete martensitic transformation, are used. The results indicated a clear correlation between the shape memory cyclic actuation behavior and the martensitic deformation character of the selected alloy. More specifically, while the actuation strokes produced by the Ni50.3Ti29.7Hf20 systems consistently followed a direct pattern for the different geometries and torque magnitudes, the results for the Ni49.9Ti50.1 cases indicated a behavior that is counterintuitive to what may be expected under pure mechanical loading conditions. In particular, when subjected to the same, high preload torques, Ni49.9Ti50.1 solid actuator under lesser stresses generated higher twist strokes than a tubular counterpart experiencing higher stresses.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 345 ◽  
Author(s):  
Weiya Li ◽  
Chunwang Zhao

The microstructure and martensitic transformation behavior of Ni50−xTi50Lax (x = 0.1, 0.3, 0.5, 0.7) shape memory alloys were investigated experimentally. Results show that the microstructure of Ni50−xTi50Lax alloys consists of a near-equiatomic TiNi matrix, LaNi precipitates, and Ti2Ni precipitates. With increasing La content, the amounts of LaNi and Ti2Ni precipitates demonstrate an increasing tendency. The martensitic transformation start temperature increases gradually with increasing La content. The Ni content is mainly responsible for the change in martensite transformation behavior in Ni50−xTi50Lax alloys.


2021 ◽  
Vol 1016 ◽  
pp. 1802-1810
Author(s):  
Hiromichi Matsuda ◽  
Masayuki Shimojo ◽  
Hideyuki Murakami ◽  
Yoko Yamabe-Mitarai

As new generation of high-temperature shape memory alloys, high-entropy alloys (HEAs) have been attracted for strong solid-solution hardened alloys due to their severe lattice distortion and sluggish diffusion. TiPd is the one potential high-temperature shape memory alloys because of its high martensitic transformation temperature above 500 °C. As constituent elements, Zr expected solid-solution hardening, Pt expected increase of transformation temperature, Au expected keeping transformation temperature, and Co expected not to form harmful phase. By changing the alloy composition slightly, two HEAs and two medium entropy alloys (MEAs) were prepared. Only two MEAs, Ti45Zr5Pd25Pt20Au5, and Ti45Zr5Pd25Pt20Co5 had the martensitic transformation. The perfect recovery was obtained in Ti45Zr5Pd25Pt20Co5 during the repeated thermal cyclic test, training, under 200 MPa. On the other hand, the small irrecoverable strain was remained in Ti45Zr5Pd25Pt20Au5 during the training under 150 MPa because of the small solid-solution hardening effect. It indicates that Ti45Zr5Pd25Pt20Co5 is the one possible HT-SMA working between 342 and 450 °C.


2010 ◽  
Vol 654-656 ◽  
pp. 2095-2098
Author(s):  
Yun Qing Ma ◽  
Shui Yuan Yang ◽  
San Li Lai ◽  
Shi Wen Tian ◽  
Cui Ping Wang ◽  
...  

The rare earth element Gd is added to Ni53Mn22Co6Ga19 high-temperature shape memory alloy to refine the grain size and adjust the distribution of γ phase, and their microstructure, martensitic transformation behaviors, mechanical and shape memory properties were investigated. The results show that the grain size is obviously decreased and the γ phase tends to segregate at grain boundaries with increasing Gd content. Small amounts of Gd-rich phase were formed with 0.1 at.% Gd addition. The martensitic transformation temperature abruptly increases with 0.1 at.% Gd addition, then almost keeps constant with further increasing Gd content. The addition of 0.1 at.% Gd is proved to be beneficial to both tensile stress and strain before fracture, but negative to the shape-memory effect.


Sign in / Sign up

Export Citation Format

Share Document