Very High Growth Rate Epitaxy Processes with Chlorine Addition

2007 ◽  
Vol 556-557 ◽  
pp. 157-160 ◽  
Author(s):  
Francesco La Via ◽  
Stefano Leone ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
Giuseppe Condorelli ◽  
...  

The growth rate of 4H-SiC epi layers has been increased by a factor 19 (up to 112 μm/h) with respect to the standard process with the introduction of HCl in the deposition chamber. The epitaxial layers grown with the addition of HCl have been characterized by electrical, optical and structural characterization methods. An optimized process without the addition of HCl is reported for comparison. The Schottky diodes, manufactured on the epitaxial layer grown with the addition of HCl at 1600 °C, have electrical characteristics comparable with the standard epitaxial process with the advantage of an epitaxial growth rate three times higher.

2006 ◽  
Vol 527-529 ◽  
pp. 163-166 ◽  
Author(s):  
Francesco La Via ◽  
G. Galvagno ◽  
A. Firrincieli ◽  
Fabrizio Roccaforte ◽  
Salvatore di Franco ◽  
...  

The growth rate of 4H-SiC epi layers has been increased by a factor 3 (up to 18μm/h) with respect to the standard process with the introduction of HCl in the deposition chamber. The epitaxial layers grown with the addition of HCl have been characterized by electrical, optical and structural characterization methods. An optimized process without the addition of HCl is reported for comparison. The Schottky diodes, manufactured on the epitaxial layer grown with the addition of HCl at 1600 °C, have electrical characteristics comparable with the standard epitaxial process with the advantage of an epitaxial growth rate three times higher.


2008 ◽  
Vol 600-603 ◽  
pp. 123-126 ◽  
Author(s):  
Francesco La Via ◽  
Gaetano Izzo ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
Giuseppe Condorelli ◽  
...  

The growth rate of 4H-SiC epi layers has been increased up to 100 µm/h with the use of trichlorosilane instead of silane as silicon precursor. The epitaxial layers grown with this process have been characterized by electrical, optical and structural characterization methods. Schottky diodes, manufactured on the epitaxial layer grown with trichlorosilane at 1600 °C, have higher yield and lower defect density in comparison to diodes realized on epilayers grown with the standard epitaxial process.


2006 ◽  
Vol 911 ◽  
Author(s):  
Francesco La Via ◽  
Giuseppa Galvagno ◽  
Andrea Firrincieli ◽  
Salvatore Di Franco ◽  
Andrea Severino ◽  
...  

AbstractThe growth rate of 4H-SiC epitaxial layer has been increased by a factor 19 (up to 112 μm/h) with respect to the standard process with the introduction of HCl in the deposition chamber. The epitaxial layers grown with the addition of HCl have been characterized by electrical, optical and structural characterization methods. The effects of different deposition parameters on the epitaxial growth process have been described in detail. This process can be very promising for high power devices with a breakdown voltage of 10 kV.


2008 ◽  
Vol 600-603 ◽  
pp. 115-118 ◽  
Author(s):  
Henrik Pedersen ◽  
Stefano Leone ◽  
Anne Henry ◽  
Franziska Christine Beyer ◽  
Vanya Darakchieva ◽  
...  

The chlorinated precursor methyltrichlorosilane (MTS), CH3SiCl3, has been used to grow epitaxial layers of 4H-SiC in a hot wall CVD reactor, with growth rates as high as 170 µm/h at 1600°C. Since MTS contains both silicon and carbon, with the C/Si ratio 1, MTS was used both as single precursor and mixed with silane or ethylene to study the effect of the C/Si and Cl/Si ratios on growth rate and doping of the epitaxial layers. When using only MTS as precursor, the growth rate showed a linear dependence on the MTS molar fraction in the reactor up to about 100 µm/h. The growth rate dropped for C/Si < 1 but was constant for C/Si > 1. Further, the growth rate decreased with lower Cl/Si ratio.


2008 ◽  
Vol 600-603 ◽  
pp. 111-114 ◽  
Author(s):  
Masahiko Ito ◽  
L. Storasta ◽  
Hidekazu Tsuchida

A vertical hot-wall type epi-reactor that makes it possible to simultaneously achieve both a high rate of epitaxial growth and large-area uniformity at the same time has been developed. A maximum growth rate of 250 µm/h is achieved at 1650 °C. Thickness uniformity of 1.1 % and doping uniformity of 6.7 % for a 65 mm radius area are achieved while maintaining a high growth rate of 79 µm/h. We also succeeded in growing a 280 µm-thick epilayer with excellent surface morphology and long carrier lifetime of ~1 µs on average. The LTPL spectrum shows free exciton peaks as dominant, and few impurity-related or intrinsic defect related peaks are observed. The DLTS measurement for an epilayer grown at 80 µm/h shows low trap concentrations of 1.2×1012 cm-3 for Z1/2 center and 6.3×1011 cm-3 for EH6/7 center, respectively.


2016 ◽  
Vol 858 ◽  
pp. 173-176 ◽  
Author(s):  
Hideyuki Uehigashi ◽  
Keisuke Fukada ◽  
Masahiko Ito ◽  
Isaho Kamata ◽  
Hiroaki Fujibayashi ◽  
...  

We have developed a single-wafer vertical epitaxial reactor which realizes high-throughput production of 4H-SiC epitaxial layer (epilayer) with a high growth rate [1,2]. In this paper, in order to evaluate the crystalline defects which can affect the characteristics of devices, we investigated the formation of variety of in-grown stacking faults (SFs) in detail. Synchrotron X-ray topography, photoluminescence (PL) and transmission electron microscopy are employed to analyze the SFs and the origins of the SF formation are discussed. The result in reducing in-grown SFs in fast epitaxial growth is also shown.


2011 ◽  
Vol 316 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Iftekhar Chowdhury ◽  
M.V.S. Chandrasekhar ◽  
Paul B. Klein ◽  
Joshua D. Caldwell ◽  
Tangali Sudarshan

2007 ◽  
Vol 307 (2) ◽  
pp. 334-340 ◽  
Author(s):  
H. Pedersen ◽  
S. Leone ◽  
A. Henry ◽  
F.C. Beyer ◽  
V. Darakchieva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document