Stress Distribution in Be Compact Tension Specimen

2007 ◽  
Vol 561-565 ◽  
pp. 2033-2036
Author(s):  
Rui Wen Li ◽  
Ping Dong

Beryllium (Be) is susceptible to introduce stress because it is a brittle metal with a high elastic modular. The compact tension (CT) specimens of beryllium were designed to determinate stress and fracture behaviors. Stress distribution near notch in CT beryllium was measured by the combination of an X-ray stress analysis and a custom-designed load device. The results show that local stresses near notch tip are much higher than those on other area. Thus, stress concentration lead the CT specimens fracture along the notch direction. Residual stresses due to machining are remained. A finite element ( FE ) calculation on the same loaded geometry was made, and the result is agreement with the measured stress distribution near notch.

2011 ◽  
Vol 82 ◽  
pp. 39-44 ◽  
Author(s):  
Joško Ožbolt ◽  
Akanshu Sharma ◽  
Hans Wolf Reinhardt

The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, and ductility, and, second, there are inertia forces activated. Both influences are clearly demonstrated in experiments. For concrete structures, which exhibit damage and fracture phenomena, the failure mode and cracking pattern depend on loading rate. Moreover, theoretical and experimental investigations indicate that after the crack reaches critical speed of propagation there is crack branching. The present paper focuses on 3D finite-element study of the crack propagation of the concrete compact tension specimen. The rate sensitive microplane model is used as a constitutive law for concrete. The strain-rate influence is captured by the activation energy theory. Inertia forces are implicitly accounted for through dynamic finite element analysis. The results of the study show that the fracture of the specimen strongly depends on the loading rate. For relatively low loading rates there is a single crack due to the mode-I fracture. However, with the increase of loading rate crack branching is observed. Up to certain threshold (critical) loading rate the maximal crack velocity increases with increase of loading rate, however, for higher loading rates maximal velocity of the crack propagation becomes independent of the loading rate. The critical crack velocity at the onset of crack branching is found to be approximately 500 to 600 m/s.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7491
Author(s):  
Marko Katinić ◽  
Dorian Turk ◽  
Pejo Konjatić ◽  
Dražan Kozak

The C* integral for the compact tension (CT) specimen is calculated using the estimation equation in ASTM E1457-15. This equation was developed based on the assumption of material homogeneity and is not applicable to a welded CT specimen. In this paper, a modified equation for estimating the C* integral for a welded compact tension (CT) specimen under creep conditions is proposed. The proposed equation is defined on the basis of systematically conducted extensive finite element (FE) analyses using the ABAQUS program. A crack in the welded CT specimen is located in the center of the heat-affected zone (HAZ), because the most severe type IV cracks are located in the HAZ. The results obtained by the analysis show that the equation for estimating the C* integral in ASTM E1457-15 can underestimate the value of the C* integral for creep-soft HAZ and overestimate for creep-hard HAZ. Therefore, the proposed modified equation is suitable for describing the creep crack growth (CCG) of welded specimens.


1983 ◽  
Vol 18 (1) ◽  
pp. 69-75 ◽  
Author(s):  
A P Kfouri

Results from an elastic-plastic finite element analysis of a compact tension specimen (CTS) are presented and provide information on the growth of crack tip plastic zones, crack tip opening displacements, stresses and strains in the region of the crack tip, and Rice's J integral. The elastic-plastic crack separation energy rate GΔ is also evaluated when the crack extends at various loads by applying a crack tip node release technique.


2010 ◽  
Vol 654-656 ◽  
pp. 2487-2490
Author(s):  
Ping Dong ◽  
Rui Wen Li ◽  
Sheng He Li

In order to evaluate the fracture characteristic near the crack tip of beryllium specimen, beryllium compact tension specimen with plane strain state is designed. The stress distribution near the crack tip is measured at different loading level by X3000 stress analyzer. Moreover, a finite element model for calculated the stress and strain fields in beryllium compact tension specimen has also been set up. As a result, the stress and strain distribution near the crack tip at different loading has been calculated by this model. According to the critical tension loading of beryllium specimen, the maximum plastic strain and the radius of the plastic zone near the crack tip are determined, where the maximum plastic strain near the crack tip is about 0.018 and the maximum radius of plastic zone is about 0.3mm. Altogether, the fracture toughness of beryllium is obtained, which is about 19.1MPam1/2.


Sign in / Sign up

Export Citation Format

Share Document