Phase Equilibria between γ-Fe (A1) and Fe2Ti Laves (C14) Phases and Microstructure in Fe-Ti-Ni Ternary System at Elevated Temperatures

2007 ◽  
Vol 561-565 ◽  
pp. 435-438 ◽  
Author(s):  
Tomoaki Sugiura ◽  
Shigehiro Ishikawa ◽  
Takashi Matsuo ◽  
Masao Takeyama

The phase equilibria among α-Fe, γ-Fe and Fe2Ti phases in Fe-Ti-Ni ternary system at 1473 K and 1373 K with Ni (γ former element) addition were examined, by paying attention to the γ+Fe2Ti two-phase region. The Fe2Ti single-phase region extends toward the equal-titanium concentration direction up to about 30 at% Ni, and the Laves phase becomes in equilibrium with γ-Fe by 12 at% Ni addition, but the γ+Fe2Ti two-phase region is limited because of the formation of liquid phase by further Ni addition at 1473 K. With decreasing temperature, a ternary eutectic reaction (L→γ-Fe+Fe2Ti+Ni3Ti) occurs, making the two-phase region wider just below the invariant reaction at 1373 K, and the region becomes narrower again by the enlargement of the three-phases region toward Fe-rich side.

2004 ◽  
Vol 842 ◽  
Author(s):  
Masao Takeyama ◽  
Nobuyuki Gomi ◽  
Sumio Morita ◽  
Takashi Matsuo

ABSTRACTPhase equilibria in Fe-Ni-Nb ternary system at elevated temperatures have been examined, in order to identify the two-phase region of γ-Fe (austenite) and ε-Fe2Nb (C14). The ε single phase region exists in the range of 27.5 to 35.5 at.% Nb in the Fe-Nb binary system, and it extends toward the equi-niobium concentration direction up to 44 at.% Ni in the ternary system at 1473 K, indicating that more than half of the Fe atoms in Fe2Nb can be replaced with Ni. Thus, the γ+ε two-phase region exists extensively, and the solubility of Nb in γ phase increases from 1.5 to 6.0 at.% with increase in Ni content. The lattice parameters of a and c in the C14 Laves phase decrease with increasing Ni content. The change in a axis is in good agreement with calculation based on Vegard's law, whereas that of c axis is much larger than the calculated value. The result suggests that atomic size effect is responsible for a-axis change and the binding energy is dominant factor for the c-axis change. To extend these findings to development of new class of austenitic steels strengthened by Laves phase, an attempt has been made to control the c/a ratio by alloying. The addition of Cr is effective to make the c/a ratio close to the cubic symmetry value (1.633).


2006 ◽  
Vol 980 ◽  
Author(s):  
Shigehiro Ishikawa ◽  
Takashi Matsuo ◽  
Masao Takeyama

AbstractPhase equilibria among the bcc Fe(α), fcc Fe(γ) and Fe2Mo(λ)_phases in Fe-Mo-Ni ternary system, particularly paying attention to the existence of the γ+λ two-phase region, have been examined at elevated temperatures below Tc (1200 K), the peritectoid reaction temperature in Fe-Mo binary system: λ?α+Fe7Mo6 (μ). At 1173 K the α+γ+μ three-phase coexisting region exists near the Fe-Mo binary edge and no λ phase region was identified. At 1073 K the λ phase in equilibrium with α and γ phases exists, although the composition homogeneity region of the ternary λ phase was limited to its binary edge toward the equi-nickel concentration direction up to about 3at % Ni. Instead, large two-phase region of γ+μ was extended along the same direction up to 20 at% Ni. The γ+λ two-phase region appears below Tc through a transition peritectoid reaction: α+μ¨γ+λ. The γ phase in equilibrium with λ phase is stable only at elevated temperatures, and it transforms martensitically to α phase during cooling. The addition of Ni stabilizes γ and μ phases against α and λ phases, thereby decreasing the relative stability of the λ phase.


2020 ◽  
Vol 39 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Shuntaro Ida ◽  
Nobuaki Sekido ◽  
Kyosuke Yoshimi

AbstractThe liquidus surface projection and isothermal section at 1,800°C in the Mo–Ti–C ternary system are examined using arc-melted alloys. A ternary transition peritectic reaction (L + Mo2C → Mo + TiC) takes place during solidification, which is apparently different from the ternary eutectic reaction (L → Mo + TiC + Mo2C) observed in a previous report. Since the composition of the eutectic reaction (L → Mo + TiC) shifts toward the Mo–Ti binary line with increasing Ti concentration, the volume fraction of the Mo phase and the interlamellar spacing of the Mo and TiC phases increase in the eutectic microstructure. At 1,800°C, the TiC phase in equilibrium with the Mo phase can contain more than 28 at% Mo and a Mo/TiC/Mo2C three-phase region exists at around Mo–15Ti–10C.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 413
Author(s):  
Sandra Lopez-Zamora ◽  
Jeonghoon Kong ◽  
Salvador Escobedo ◽  
Hugo de Lasa

The prediction of phase equilibria for hydrocarbon/water blends in separators, is a subject of considerable importance for chemical processes. Despite its relevance, there are still pending questions. Among them, is the prediction of the correct number of phases. While a stability analysis using the Gibbs Free Energy of mixing and the NRTL model, provide a good understanding with calculation issues, when using HYSYS V9 and Aspen Plus V9 software, this shows that significant phase equilibrium uncertainties still exist. To clarify these matters, n-octane and water blends, are good surrogates of naphtha/water mixtures. Runs were developed in a CREC vapor–liquid (VL_ Cell operated with octane–water mixtures under dynamic conditions and used to establish the two-phase (liquid–vapor) and three phase (liquid–liquid–vapor) domains. Results obtained demonstrate that the two phase region (full solubility in the liquid phase) of n-octane in water at 100 °C is in the 10-4 mol fraction range, and it is larger than the 10-5 mol fraction predicted by Aspen Plus and the 10-7 mol fraction reported in the technical literature. Furthermore, and to provide an effective and accurate method for predicting the number of phases, a machine learning (ML) technique was implemented and successfully demonstrated, in the present study.


1952 ◽  
Vol 44 (3) ◽  
pp. 609-615 ◽  
Author(s):  
H. H. Reamer ◽  
B. H. Sage ◽  
W. N. Lacey

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Osvaldo Fornaro

The Sn-Cu system presents an important interest from academic and technological point of view because it is part of the family of alloys proposed as lead-free solder alloys for electronic components and also due to the mechanisms involved during the growth of the different phases. Sn-Cu system has two intermetallic phases, i.e., ε-Cu3Sn and η-Cu6Sn5, and η can be used as the negative (anode) electrode in Li-ion batteries, alone or as part of (Co,Ni)xCu6−xSn5-type composites. Obtaining this η phase from liquid with the appropriate chemical composition is a very difficult task because it has a formation temperature lower than liquidus for such a composition. In this way, the η phase appears as a consequence of a solid-solid transformation from the ε phase However, it is possible to find the η phase as the primary or secondary phase after a eutectic reaction for lower concentrations of Cu. On the other side, the Cu6Sn5 phase shows a hexagonal to monoclinic solid-solid transformation around 187°C, which could affect the mechanical system stability when it is used as solder. In this work, directional solidification at different growth velocities of hypereutectic Sn-Cu samples was performed. The resultant microstructure varies with the growth velocity, but it is formed for a fibber-like primary phase Cu6Sn5 which is projected towards the liquid phase. Behind this region, these fibbers are rounded by a two-phase Sn-Cu6Sn5 structure. In this way, three zones could to be defined in the sample during the directional growth: (i) an entirely solid two-phase region, formed by η rounded by β(Sn) + η eutectic-like structure, (ii) a two-phase solid (η) + liquid, and (iii) the remnant liquid in front of the interface.


1983 ◽  
Vol 27 ◽  
Author(s):  
D. I. Potter ◽  
M. Ahmed ◽  
S. Lamond

ABSTRACTThe chemical and microstructural changes caused by the direct implantation of solutes into metals are examined. The particular case involving Al+-ion implantation into nickel is treated in detail. Chemical composition profiles measured using Auger spectroscopy and Rutherford backscattering, and average near-surface chemical composition measured using an analytical electron microscope, are compared with model calculations. The microstructures that develop during implantation are investigated using transmission electron microscopy. For low fluences implanted near room temperature, these microstructures contain dislocations and dislocation loops. Dislocation loops, dislocations, and voids result from implantations at temperatures near 500°C. Higher fluences at these elevated temperatures produce precipitates when the composition of implanted solute lies in a two-phase region of the phase diagram. Implanted concentrations corresponding to intermetallic compounds produce continuous layers of these compounds. Room temperature, as compared to elevated temperature, implantation may produce the same phases at the appropriate concentrations, e.g. β'-NiAl, or different phases, depending on the relative stability of the phases involved.


2019 ◽  
Vol 40 (4) ◽  
pp. 570-582 ◽  
Author(s):  
Shuntaro Ida ◽  
Ryosuke Yamagata ◽  
Hirotoyo Nakashima ◽  
Satoru Kobayashi ◽  
Masao Takeyama

Sign in / Sign up

Export Citation Format

Share Document