A Study on the Development of Mach Peening for Prolonging Fatigue Life of Machine Structural Alloy Steel

2008 ◽  
Vol 580-582 ◽  
pp. 621-624
Author(s):  
Bok Kyu Lim

The light weight components, crucial in automobiles and machinery, is require hight strength. Mach peening process is one of many of techniques utilized for improving fatigue properties. From the results of rotary bending fatigue tests, the fatigue strength increases up to 129% in mach peening specimen compared with un-peening. A layer of highly compressed residual stress is obtained by mach peening. The compressive residual stress, induced by mach peening, seems to be an important factor for increasing the fatigue strength.

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1554-1559 ◽  
Author(s):  
Daisuke Yonekura ◽  
Atsushi Tsukuda ◽  
Ri Ichi Murakami ◽  
Koji Hanaguri

In this study, we selected the nitride Cr-Mo Steel SCM435 as the substrate. Attention was focussed on the effect of film thickness. The Arc Ion Plating was performed using Cr cathode and N2 gas. The specimens were prepared for the film thickness 6, 12 and 18μm The three point bending fatigue tests were performed at room temperature in a laboratory environment. After the fatigue test, crack initiation sites were examined by using an optical microscope and a scanning electron microscope. The results obtained were as follows: (1) A high compressive residual stress generated in the film, and the compressive residual stress of 12μm film thickness was the greatest. (2) The fatigue strength of coated specimens for thin film was slightly lower than for substrate. (3) The film thickness hardly affected the fatigue strength of coated specimens.


2014 ◽  
Vol 891-892 ◽  
pp. 662-667 ◽  
Author(s):  
Yuki Nakamura ◽  
Masaki Nakajima ◽  
Hiroaki Masuda ◽  
Toshifumi Kakiuchi ◽  
Yoshihiko Uematsu

Roller burnishing (RB) and friction stir processing (FSP) were applied to a cast aluminum alloy, AC4CH-T6 (equivalent to A356-T6), to improve the fatigue properties. In roller burnished specimens, Vickers hardness was increased until the depth of 60μm compared with that of the as-cast specimens, resulting in work-hardening by RB. The compressive residual stress on the surface of the roller burnished specimens was also increased from 35MPa to 132MPa. In order to investigate the effect of RB on the fatigue properties, rotary bending fatigue tests have been performed using the roller burnished and the as-cast specimens. The roller burnished specimens exhibited higher fatigue strength than the untreated specimens. It is due to the increase in hardness and compressive residual stress by RB. In addition, plane bending fatigue tests have been performed using the friction stir processed and untreated specimens. Fatigue strengths of the friction stir processed specimens were highly improved compared with untreated specimens as the results of the elimination of casting defects by FSP. However, the crack growth rates of the friction stir processed specimens were faster than those of untreated specimens. It is due to the softening of the material by heat input during the FSP.


2007 ◽  
Vol 353-358 ◽  
pp. 215-218
Author(s):  
Shoichi Kikuchi ◽  
Jun Komotori ◽  
Yutaka Kameyama ◽  
Kengo Fukazawa

In order to clarify the effects of the hybrid surface modification process; a combination of Fine Particle Bombardment (FPB) treatment and nitriding, on the fatigue properties of AISI 4135 steel (stress concentration factor: α=2.36), high cycle fatigue tests were carried out with a rotational bending machine at room temperature. Observations of fracture surfaces and measurements of hardness and residual stress distributions were carried out to investigate the fracture mechanism and fatigue strength. It was revealed that treating process sequence did affect residual stress distributions. Compressive residual stress generated at the surface of FPB treated specimen after nitriding was higher than that of the one FPB treated before nitriding. It was clarified that the higher the specimen hardness was, the higher compressive residual stress was generated at the surface. Therefore, FPB treatment after nitriding increased the fatigue strength of steel.


2011 ◽  
Vol 295-297 ◽  
pp. 2227-2230
Author(s):  
Cong Ling Zhou

In this study, fatigue tests have been performed using two kinds of specimens made of 25 steel. One is pre-strained specimen with pre-strain ratio changing from 2% to 8% by tension, the other is roller worked with deformation of 0.5 mm and 1.0 mm in diameter direction. In the case of pre-strained specimen, the fatigue limit increases according to increase of tensile pre-strain, the fatigue limit of 8% pre-strained specimen is 25% higher than that of non-pre-strained one; in the case of roller worked specimen, the fatigue limit of R05 and R10 is 126% and 143% to that of non-roller worked specimen, respectively. These remarkable improvements of fatigue limit would be caused by the existence of compressive residual stress, work-hardening and the elongated microscopic structures.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 619 ◽  
Author(s):  
Ján Lago ◽  
Libor Trško ◽  
Michal Jambor ◽  
František Nový ◽  
Otakar Bokůvka ◽  
...  

Ultrasonic impact peening was applied on welded joints manufactured from Strenx 700 MC high strength low alloy steel with the aim to improve the fatigue properties. Three different surface treatment parameters were tested, which resulted in transformation of the near-surface tensile residual stresses in the weld metal and heat affected zone to compressive residual stress field, while maximal values from −400 MPa up to −800 MPa were reached. The highest fatigue life improvement was reached by the double peening with the 85 N contact force, where the fatigue limit for N = 108 cycles increased from 370 MPa to 410 MPa.


2011 ◽  
Vol 275 ◽  
pp. 109-112 ◽  
Author(s):  
Daisuke Yonekura ◽  
Yuta Fujie ◽  
Hayato Nishii ◽  
Hiroshi Yamakawa ◽  
Riichi Murakami

Tension-tension fatigue tests were performed to examine the influence of post drawing heat treatment on the fatigue properties of drawn specific steel tube (STB340) for small-sized single pass boiler. The untreated, as-drawn and post drawing heat treated series were prepared for fatigue tests. The hardness, grain size and residual stress were measured for each series. As a result, the change of grain size and residual stress was small after post heat treatment. The drawn series was softened by post heat treatment but the hardness was still higher than untreated samples. The fatigue strength of the as-drawn and the post drawing heat treated series was higher than that of untreated series. In addition, the difference of endurance limit was small between as-drawn and post drawing heat treated series.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3646-3651
Author(s):  
SHOICHI KIKUCHI ◽  
KENGO FUKAZAWA ◽  
JUN KOMOTORI ◽  
MASAO SHIMIZU

In order to clarify the effects of nitriding and hybrid surface modification process combining nitriding and induction hardening on fatigue properties of SCM435H steel, high cycle fatigue tests were carried out with a rotational bending machine at room temperature. Observations of fracture surfaces and measurement of hardness and residual stress distributions were carried out to investigate the fracture mechanism. It was revealed that hybrid surface modification process generated a compressive residual stress field and hardened even at center of the specimen. Fatigue strength of hybrid surface modified specimens was much higher than that of substrate and nitrided specimens. This was because a transition of fracture mode from internal to surface fracture; fatigue fracture of nitrided specimens occurred at inside of the hardened layer, in the case of hybrid surface modified specimens, however, fatigue crack initiated at the surface of the specimen with higher hardness and higher compressive residual stress.


2012 ◽  
Vol 217-219 ◽  
pp. 2234-2237 ◽  
Author(s):  
Su Qin Jiang ◽  
Hong Guang Xu

Based on finite element method, the FEA model used for analyzing fatigue properties of sample treated by laser shot peening (LSP) was established. In order to research the influence of material intensity on LSP effect, two kinds of wrought magnesium alloys AZ31B and ZK60 with different intensity were chosen as object, the compressive residual stress and fatigue life after LSP were analyzed. After spring back analysis the elastic strain is released in material inner, the value of compressive residual stress was reduced; after LSP with 3 times, the fatigue life gains of AZ31B and ZK60 were 105% and 163%, respectively. The results show that strengthening effect of high intensity material treated by LSP is better than that of low intensity material.


2010 ◽  
Vol 449 ◽  
pp. 15-22 ◽  
Author(s):  
Martin Castillo-Morales ◽  
A. Salas-Zamarripa

The Ultrasonic Impact Treatment (UIT) has been used in different materials to reduce residual welding tensile stresses and improve the fatigue life of welded joints, and also to increase the fatigue resistance at low temperatures. The main aim of this research was to explore the effects of UIT in the fatigue life of a 2024-T3 aluminium alloy. Load controlled fatigue tests were carried out at high and low cycle fatigue, and three UIT parameters at a carrier frequency of 36 kHz were evaluated. These parameters were feed rate, amplitude under load and impact frequency. The results revealed an increase in compressive residual stress and microhardness, as well as some evidence of porosity. However, the fatigue life was reduced drastically. The possible causes of this decrease are still under discussion.


2021 ◽  
Vol 112 (9-10) ◽  
pp. 2961-2970
Author(s):  
Nursen Saklakoglu ◽  
Amir Bolouri ◽  
Simge Gencalp Irizalp ◽  
Fatih Baris ◽  
Ali Elmas

AbstractShot peening processes are commonly used for improving the fatigue properties of steels. Shot peening introduces a compressive residual stress field in the near surface of steel, which can reduce or stop the growth of fatigue cracks and improve fatigue properties. This study experimentally investigated the effect of shot peening on the fatigue properties of 50CrV4 steel alloys with different artificial surface defects. Drilling tools were used to introduce different artificial defects with root radii of 0.585 mm and 0.895 mm on the surface of unpeened samples. The shot peening was applied to the drilled and undrilled samples. Scanning electron microscopy (SEM) observations, micro-hardness and X-ray diffraction residual stress measurements were conducted to analyse the characteristics of the shot-peened and unpeened samples. The results show that the shot peening leads to the transformation of the retained austenite to martensite in the near-surface microstructure. The hardness rates of the surface and near surface both increase by 8% after the shot peening. The peened samples exhibit compressive residual stresses with a high degree of isotropy in the near surface. The fatigue properties of samples were experimentally evaluated by conducting 3-point bending tests. The results indicate that the shot peening improves the fatigue life of drilled and undrilled samples. For the defects with the root radius of 0.895 mm, the shot peening leads to a 500% improvement in the fatigue life compared to unpeened samples regardless of defect depth. For the defects with the root radius of 0.585 mm, the improvement in fatigue life is 40% for the defect depth of 0.2 mm compared to unpeened samples. The improvement increases to 60% and 200% by increasing the defect depths to 0.4 mm and 0.6 mm. The fatigue properties are linked to the changes in the features of defects mainly caused by the deformation hardening and compressive residual stress after shot peening.


Sign in / Sign up

Export Citation Format

Share Document