Texture Development during Friction Stir Welding of Magnesium Alloys

2011 ◽  
Vol 702-703 ◽  
pp. 43-47
Author(s):  
Hiroyuki Kokawa ◽  
Yutaka S. Sato ◽  
Sergey Mironov

The principal features of material flow during friction stir welding (FSW) were illustrated via textural measurements in magnesium alloys. The straining state in the stir zone was demonstrated to be close to the simple-shear deformation with the shear plane/direction aligned with the local surface of the welding tool. Due to the unique nature of FSW process as well as specific character of the welding tool geometry, texture distribution in the stir zone was shown to be inherently inhomogeneous. The impact of this effect on mechanical properties is briefly considered.

Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


2013 ◽  
Vol 856 ◽  
pp. 16-21
Author(s):  
R. Beygi ◽  
Mohsen Kazeminezhad ◽  
A.H. Kokabi ◽  
S. Mohammad Javad Alvani ◽  
D. Verdera ◽  
...  

In this study friction stir welding of Al-Cu laminated composites were carried out by two different tool geometries. Welding procedure was carried out from both sides of Al and Cu. Analyzing cross section of welds showed that different contact conditions between shoulder and material, offers different material flow behavior which is dependent on the tool geometry. SEM analyses showed that mixing of materials in nugget region is more pronounced in the advancing side. Also XRD results indicated that welding from Cu side, leads to intermetallic formation in mixed regions.


Author(s):  
Hosein Atharifar ◽  
Radovan Kovacevic

Minimizing consumed energy in friction stir welding (FSW) is one of the prominent considerations in the process development. Modifications of the FSW tool geometry might be categorized as the initial attempt to achieve a minimum FSW effort. Advanced tool pin and shoulder features as well as a low-conductive backing plate, high-conductive FSW tools equipped with cooling fins, and single or multi-step welding processes are all carried out to achieve a flawless weld with reduced welding effort. The outcomes of these attempts are considerable, primarily when the tool pin traditional designs are replaced with threaded, Trifiute or Trivex geometries. Nevertheless, the problem remains as to how an inclined tool affects the material flow characteristics and the loads applied to the tool. It is experimentally proven that a positive rake angle facilitates the traverse motion of the FSW tool; however, few computational evidences were provided. In this study, numerical material flow and heat transfer analysis are carried out for the presumed tool rake angle ranging from −4° to 4°. Afterwards, the effects of the tool rake angle to the dynamic pressure distribution, strain-rates, and velocity profiles are numerically computed. Furthermore, coefficients of drag, lift, and side force and moment applied to the tool from the visco-plastic material region are computed for each of the tool rake angles. Eventually, this paper confirms that the rake angle dramatically affects the magnitude of the loads applied to the FSW tool, and the developed advanced numerical model might be used to find optimum tool rake angle for other aluminum alloys.


2006 ◽  
Vol 47 (1) ◽  
pp. 224-232 ◽  
Author(s):  
Hidetoshi Fujii ◽  
Young Gon Kim ◽  
Takuya Tsumura ◽  
Toru Komazaki ◽  
Kazuhiro Nakata

Author(s):  
Kethavath Kranthi Kumar ◽  
Adepu Kumar ◽  
MVNV Satyanarayana

Material flow has a significant impact on the joint properties and is one of the most challenging aspects to be understood in dissimilar friction stir welding. The present study emphasizes the role of process parameters on material flow, mechanical properties and corrosion behavior of dissimilar friction stir welds of AA5083-AA6061. Microstructural analysis revealed that the onion ring sub-layer width observed at the stir zone was substantially changed by varying process parameters. It was understood that the higher rotational speeds promote better intermixing and enhanced mechanical properties. The notch tensile strength values were in correlation with the intermixing of materials at the stir zone and the highest notch tensile strength value was obtained at 1400 rpm and 60 mm/min. A remarkable degree of material intermixing and fragmentation of intermetallics at higher rotational speeds resulted in better corrosion resistance.


2008 ◽  
Vol 14 (S3) ◽  
pp. 87-90 ◽  
Author(s):  
C. Leitão ◽  
R.M. Leal ◽  
D.M. Rodrigues ◽  
P. Vilaça ◽  
A. Loureiro

Friction stir welding (FSW) is a solid-state joining technique initially developed for aluminium alloys. The heat generated by a rotating tool softens the material in the vicinity of the tool. The material undergoes intense plastic deformation following quite complex paths around the tool, depending on the tool geometry, process parameters and material to be welded. The comprehension of the material flow is essential to prevent voids and other internal defects which may form during welding. Several techniques have been used for tracking material flow during FSW such as metallography, the use of a marker material as a tracer or the flow visualization by FSW of dissimilar materials or even the X-ray and computer tomography. Some of these techniques are useless in the analysis of welds in homogenous materials or welds between materials of the same group. The aim of this investigation is tracking the material flow in FSW between 1mm thick sheets in aluminium alloys AA 5182-H111 and AA 6016-T4, currently used in automotive industry.


Sign in / Sign up

Export Citation Format

Share Document