Influence of Laser Parameters on Magnesium Alloy Surface Modification

2011 ◽  
Vol 704-705 ◽  
pp. 1216-1218
Author(s):  
Kai Sun ◽  
Sen Yang ◽  
Feng Xia Liu

It’s an important content to treat on the magnesium alloy surface for improving it’s abrasion performance and corrosion resistance in the field of surface engineering nowerdays. This research takes the AZ91D magnesium alloy and Aluminum as a substrate and powdered alloy respectively.It takes the laser surface modified technology as the method so that to enhance the corrosion resistance of the magnesium alloy surface.The optimization technological parameters are obtained by discussing the influence rule on laser power to corrosion resistance of AZ91D substrate and Mg-Al modified level.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5903
Author(s):  
Michał Tacikowski ◽  
Janusz Kamiński ◽  
Krzysztof Rożniatowski ◽  
Marcin Pisarek ◽  
Rafał Jakieła ◽  
...  

Coating magnesium alloys with nitride surface layers is a prospective way of improving their intrinsically poor surface properties; in particular, their tribological and corrosion resistance. These layers are usually produced using PVD methods using magnetron sputtering or arc evaporation. Even though the thus-produced layers significantly increase the wear resistance of the alloys, their effects on corrosion resistance are unsatisfactory because of the poor tightness, characteristic of PVD-produced products. Tightness acquires crucial significance when the substrate is a highly-active magnesium alloy, hence our idea to tighten the layers by subjecting them to a post-deposition chemical-hydrothermal-type treatment. This paper presents the results of our experiments with a new hybrid surface engineering method, using a final tightening pressure hydrothermal gas treatment in overheated steam of the composite titanium nitride layers PVD, produced on AZ91D magnesium alloy. The proposed method resulted in an outstanding improvement of the performance properties, in particular resistance to corrosion and wear, yielding values that exceed those exhibited by commercially anodized alloys and austenitic stainless 316L steel. The developed hybrid method produces new, high-performance corrosion and wear resistant, lightweight magnesium base materials, suitable for heavy duty applications.


2004 ◽  
Vol 179 (2-3) ◽  
pp. 297-305 ◽  
Author(s):  
J.Dutta Majumdar ◽  
B.Ramesh Chandra ◽  
B.L. Mordike ◽  
R. Galun ◽  
I. Manna

2012 ◽  
Vol 525-526 ◽  
pp. 9-12 ◽  
Author(s):  
Er Bao Liu ◽  
Xiu Fang Cui ◽  
Guo Jin ◽  
Qing Fen Li ◽  
Tian Min Shao

The niobium film is prepared by magnetron sputtering on the surface of the AZ91D magnesium alloy. The morphology, phase structure, roughness, nanohardness and elastic modulus of the niobium films were studied by filed emission scanning electron microscope, X-ray diffraction, atomic force microscope and nanoindentation respectively. The influences of film deposition parameters, such as substrate temperature, negative bias and power on the properties of films were investigated. The corrosion resistance of niobium films on magnesium alloy was investigated by electrochemical system. Results show that the microstructure, phase structure, roughness, nanohardness and elastic modulus of the niobium films are determined by power, negative bias and substrate temperature. And the corrosion resistance of magnesium alloy improved obviously when coated with the niobium films.


Sign in / Sign up

Export Citation Format

Share Document