Selection and Design Principles of Wrought Aluminium Alloys for Structural Applications

2012 ◽  
Vol 710 ◽  
pp. 50-65 ◽  
Author(s):  
A.K. Mukhopadhyay

This article discusses the fundamental principles associated with the selection of aluminium alloys for specific purposes, alloy design & heat treatment procedures and development of key microstructures responsible for obtaining desired properties in selected wrought Al alloys for aerospace and defence applications. Influence of micro/trace additions of suitable alloying elements on the microstructure and properties of high strength 7xxx series Al alloys is further highlighted.

Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


Author(s):  
Siddhartha Kosti

This chapter deals with the modelling of nanomaterial and nanocomposite mechanical and thermal properties. Enrichment in the technology requires materials having higher thermal properties or higher structural properties. Nanomaterials and nanocomposites can serve this purpose accurately for aerospace or thermal applications and structural applications respectively. The thermal system requires materials having high thermal conductivity while structural system requires materials having high strength. Selection of the material for particular application is very critical and requires knowledge and experience. Al, Cu, TiO2, Al2O3, etc. are considered for thermal applications while epoxy-glass, FRP, etc. are considered for structural applications. Modelling of these nanomaterials and nanocomposites is done with the help of different mathematical models available in the literature. Results show that addition of the nanoparticle/composite in the base material can enhance the thermal and structural properties. Results also show that amount of weight percentage added also affects the properties.


Author(s):  
Siddhartha Kosti

This chapter deals with the modelling of nanomaterial and nanocomposite mechanical and thermal properties. Enrichment in the technology requires materials having higher thermal properties or higher structural properties. Nanomaterials and nanocomposites can serve this purpose accurately for aerospace or thermal applications and structural applications respectively. The thermal system requires materials having high thermal conductivity while structural system requires materials having high strength. Selection of the material for particular application is very critical and requires knowledge and experience. Al, Cu, TiO2, Al2O3, etc. are considered for thermal applications while epoxy-glass, FRP, etc. are considered for structural applications. Modelling of these nanomaterials and nanocomposites is done with the help of different mathematical models available in the literature. Results show that addition of the nanoparticle/composite in the base material can enhance the thermal and structural properties. Results also show that amount of weight percentage added also affects the properties.


2020 ◽  
Vol 6 (39) ◽  
pp. eabb6658
Author(s):  
Lu-Lu Li ◽  
Yanqing Su ◽  
Irene J. Beyerlein ◽  
Wei-Zhong Han

Fe-Al compounds are of interest due to their combination of light weight, high strength, and wear and corrosion resistance, but new forms that are also ductile are needed for their widespread use. The challenge in developing Fe-Al compositions that are both lightweight and ductile lies in the intrinsic tradeoff between Al concentration and brittle-to-ductile transition temperature. Here, we show that a room-temperature, ductile-like response can be attained in a FeAl/FeAl2 layered composite. Transmission electron microscopy, nanomechanical testing, and ab initio calculations find a critical layer thickness on the order of 1 μm, below which the FeAl2 layer homogeneously codeforms with the FeAl layer. The FeAl2 layer undergoes a fundamental change from multimodal, contained slip to unimodal slip that is aligned and fully transmitting across the FeAl/FeAl2 interface. Lightweight Fe-Al alloys with room-temperature, ductile-like responses can inspire new applications in reactor systems and other structural applications for extreme environments.


2019 ◽  
Vol 374 ◽  
pp. 21-31 ◽  
Author(s):  
Kamaal S. Al-Hamdani ◽  
James W. Murray ◽  
Tanvir Hussain ◽  
Adam T. Clare

1959 ◽  
Vol 63 (578) ◽  
pp. 90-94
Author(s):  
G. A. Hawkes

Summary:An X-ray back reflection technique has been used to measure the surface residual stresses resulting from the cold and hot forming of certain high strength aluminium alloys. The alloys examined were to specifications DTD 683, DTD 687 and B.S.S. L65, and the residual stresses have been related to the residual strain in bending of these alloys. The results show that, apart from the degree of straining, the residual stresses are affected by the heat treatment (cold or hot quench) and the amount (if any) of controlled stretching that the alloy has had between solution treatment and precipitation.


Sign in / Sign up

Export Citation Format

Share Document