Grain Growth during Annealing: Experiments and Modelling

2012 ◽  
Vol 715-716 ◽  
pp. 611-616 ◽  
Author(s):  
M. Candic ◽  
Bao Hui Tian ◽  
Christof Sommitsch

In the present work, for the description of grain coarsening, a probabilistic and a deterministic 2D cellular automaton simulation setup were developed. The results of the simulation have been validated by solution annealing experiments of austenitic stainless steel 304L (Fe-18Cr-8Ni) at different temperatures and times. Both cellular automata models show an excellent correlation between the experimental determined data and grain growth kinetics based upon considerations of temperature and second phase particles. Additionally, a two parameter approach of the probabilistic model was implemented, resulting in determining the grain sizes limiting normal and abnormal grains and accurate description of grain growth.

Author(s):  
P. Rajendra ◽  
K. R. Phaneesh ◽  
C. M. Ramesha ◽  
Madeva Nagaral ◽  
V Auradi

In metallurgy, the microstructure study is very important to evaluate the properties and performances of a material. The Monte Carlo method is applied in so many fields of Engineering Science and it is a very effective method to examine the topology of the computer-simulated structures and exactly resembles the static behavior of the atoms. The effective 2D simulation was performed to understand the grain growth kinetics, under the influence of second phase particles (impurities) is a base to control the microstructure. The matrix size and [Formula: see text]-states are optimized. The grain growth exponent was investigated in a polycrystalline material using the [Formula: see text]-state Potts model under the Monte Carlo simulation. The effect of particles present within the belly of grains and pinning on the grain boundaries are observed. The mean grain size under second phase particles obeys the square root dependency.


1982 ◽  
Vol 21 ◽  
Author(s):  
M. P. Anderson ◽  
D. J. Srolovitz ◽  
G. S. Grest ◽  
P. S. Sahni

The physical and chemical properties of materials are determined in part by microstructure. Grain orientation and size in polycrystalline aggregates affect, for example, yield strength, catalytic efficiency, chemisorption, physisorption, fracture and a host of other properties. The final grain morphology is often determined by thermal processing, addition of a second phase, deformation, etc. However, in order to effectively tailor the microstructure for specific applications, the mechanism and kinetics of grain growth must be known. Unfortunately, present theories predict grain growth kinetics (1–3) which often differ from experimental observation, have little predictive ability with respect to microstructure and are not easily generalized to account for experimentally controllable factors.


2014 ◽  
Vol 598 ◽  
pp. 8-12
Author(s):  
K.R. Phaneesh ◽  
Anirudh Bhat ◽  
Gautam Mukherjee ◽  
Kishore T. Kashyap

Large scale Potts model Monte Carlo simulation was carried on 3-dimensional square lattices of 1003 and 2003 sizes using the Metropolis algorithm to study grain growth behavior. Simulations were carried out to investigate both growth kinetics as well as the Zener limit in two-phase polycrystals inhibited in growth by second phase particles of single-voxel size. Initially the matrices were run to 10,000 Monte Carlo steps (MCS) to check the growth kinetics in both single phase and two-phase poly-crystals. Grain growth exponent values obtained as a result have shown to be highest (~ 0.4) for mono-phase materials while the value decreases with addition of second phase particles. Subsequently the matrices were run to stagnation in the presence of second phase particles of volume fractions ranging from 0.001to 0.1. Results obtained have shown a cube root dependence of the limiting grain size over the particle volume fraction thus reinforcing earlier 3D simulation efforts. It was observed that there was not much difference in the values of either growth kinetics or the Zener limit between 1003 and 2003 sized matrices, although the results improved mildly with size.


2004 ◽  
Vol 467-470 ◽  
pp. 863-868 ◽  
Author(s):  
Carlos Capdevila ◽  
Tommy De Cock ◽  
Francisca García Caballero ◽  
Carlos García-Mateo ◽  
Carlos García de Andrés

The influence of the deformation grade on the recrystallised grain size has been studied in the AISI 304 stainless steel. Therefore, cold rolled samples of this material with reductions varying between 30% and 80% were annealed at different temperatures and subsequently quenched. The mean austenitic grain sizes were measured and compared. Moreover, the correlation between the variation of the thermoelectric power and the grain growth was investigated for each degree of prior deformation.


2016 ◽  
Vol 850 ◽  
pp. 307-313
Author(s):  
Yan Wu ◽  
Si Xia ◽  
Bernie Ya Ping Zong

A phase field model has been established to simulate the grain growth of AZ31 magnesium alloy containing spherical particles with different sizes and contents under realistic spatial-temporal scales. The expression term of second phase particles are added into the local free energy density equation, and the simulated results show that the pinning effect of particles on the grain growth is increased when the contents of particles is increasing, which is consistent with the law of Zener pinning. There is a critical particle size to affect the grain growth in the microstructure. If the size of particles is higher than the critical value, the pinning effect of particles for grain growth will be increased with further decreasing the particle size; however the effect goes opposite if the particle size is lower than the critical value.


Sign in / Sign up

Export Citation Format

Share Document