Effect of Disc Geometry on the Steady State Creep in a Rotating Disc Made of Functionally Graded Materials

2012 ◽  
Vol 736 ◽  
pp. 183-191 ◽  
Author(s):  
Manish Garg ◽  
B.S. Salaria ◽  
V.K. Gupta

The steady state creep behaviour of a rotating FGM disc having linearly varying thickness has been investigated. The disc is assumed to be made of functionally graded composite containing non-linearly varying radial distribution of silicon carbide particles in a matrix of pure aluminum. The creep behaviour of the composite has been described by threshold stress based law. The effect of varying the disc thickness gradient has been analyzed on the stresses and strain rates in the FGM disc. It is observed that the radial and tangential stresses induced in the FGM disc decrease throughout with the increase in thickness gradient of the disc. The strain rates also decrease with the increase in thickness gradient of the FGM disc, with a relatively higher decrease near the inner radius. The increase in disc thickness gradient results in relatively uniform distribution of strain rates and hence reduces the chances of distortion in the disc.

2015 ◽  
Vol 32 (5) ◽  
pp. 1230-1250 ◽  
Author(s):  
Manish Garg ◽  
B S Salaria ◽  
V K Gupta

Purpose – The purpose of this paper is to investigate steady state creep behavior of a functionally graded rotating disc under varying thermal gradient (TG). Design/methodology/approach – The steady state creep in a rotating FGM disc with linearly varying thickness has been investigated by using von-Mises yield criterion. The disc under investigation is assumed to be made of FGM containing non-linear distribution of silicon carbide particle (SiCp) in a matrix of pure aluminum along the radial distance. The creep behavior of the FGM composite disc is described by threshold stress-based law. The stresses and strain rates in the FGM disc have been estimated for different kinds of TG. Findings – The results indicate that when the FGM disc is subjected to a radial TG, with temperature increasing with increasing radius, the radial stress in the disc increases over the entire disc but the tangential and effective stresses increase near the inner radius and decrease toward the outer radius. The imposition of such a radial TG in the FGM disc leads to significant reduction in the radial and tangential strain rates. With the increase in magnitude of TG in the FGM disc, the inhomogeneity in creep stresses increases but the inhomogeneity in strain rates decreases significantly, thereby reducing the chances of distortion in the FGM disc. Originality/value – The creep strain rates in rotating FGM disc could be significantly reduced when the disc is subjected to a radial TG, with temperature increasing with increasing radius.


2014 ◽  
Vol 31 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M. Z. Nejad ◽  
Z. Hoseini ◽  
A. Niknejad ◽  
M. Ghannad

AbstractIn the present study, a closed-form analytical solution for the steady-state creep stresses of rotating thick cylindrical pressure vessels made of functionally graded materials (FGMs) is carried out. Norton's law governs the creep response of the material. Exact solutions for stresses and strain rate are obtained under the plane strain condition. How different material parameters involved in Norton's law affect radial and circumferential stresses together with the equivalent strain rate in rotating thick-walled cylindrical vessels under internal pressure is investigated. The result obtained shows that the property of FGMs has a significant influence on the equivalent creep strain rate and stresses distributions along the radial direction.


Author(s):  
Vandana Gupta ◽  
S. B. Singh

In this paper, an effort has been made to study the effect of anisotropy on the steady state creep behavior in the functionally graded material disc with hyperbolic thickness made of Al - SiC (particle). The content of silicon carbide particles in the disc is assumed to decrease linearly from the inner to the outer radius of the disc. The creep behavior of the disc under stresses developing due to rotation at 15,000 rpm has been determined by Sherby's law. The creep parameters of the FGM disc vary along the radial distance due to varying composition and this variation has been estimated by regression fit of the available experimental data. The creep response of rotating disc is expressed by a threshold stress with value of stress exponent as 8. The study reveals that the anisotropy has a significant effect on the steady state creep response of rotating FGM disc. Thus, the care to introduce anisotropy should be taken for the safe design of the rotating FGM disc with hyperbolic thickness.


Author(s):  
Kishore Khanna ◽  
Vinay Kumar Gupta ◽  
Neeraj Grover

The study is carried out to develop a mathematical model to analyze creep response of a varying thickness rotating disc made of anisotropic functionally graded 6061Al-SiCw.composite. The thickness and content of reinforcement (SiCw) in the disc are assumed to decrease radially according to power law. The yielding of disc material is according to Hill’s criterion and creeping as per threshold stress based law. The developed model is used to obtain the creep stresses and strain rates in the disc for various types of materials’ anisotropy. The stresses and strain rates are noticed to depend on the materials’ anisotropy. The study reveals that the presence of kind of anisotropy wherein the disc material exhibits lower yield strength toward the radial and tangential directions than the axial direction is beneficial in reducing the creep stresses and creep rates in the disc, in comparison to isotropic FGM disc. An anisotropic FG disc, which has highest and the lowest yield strengths, respectively, along the axial and radial directions shows superior creep response.


2019 ◽  
Vol 18 ◽  
pp. 3401-3408 ◽  
Author(s):  
Sukhjinder Singh Sandhu ◽  
Tejeet Singh ◽  
V.K. Gupta

Sign in / Sign up

Export Citation Format

Share Document