steady state creep
Recently Published Documents


TOTAL DOCUMENTS

515
(FIVE YEARS 34)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Sagar Masuti ◽  
Sylvain Barbot

AbstractThe rheology of the upper mantle impacts a variety of geodynamic processes, including postseismic deformation following great earthquakes and post-glacial rebound. The deformation of upper mantle rocks is controlled by the rheology of olivine, the most abundant upper mantle mineral. The mechanical properties of olivine at steady state are well constrained. However, the physical mechanism underlying transient creep, an evolutionary, hardening phase converging to steady state asymptotically, is still poorly understood. Here, we constrain a constitutive framework that captures transient creep and steady state creep consistently using the mechanical data from laboratory experiments on natural dunites containing at least 94% olivine under both hydrous and anhydrous conditions. The constitutive framework represents a Burgers assembly with a thermally activated nonlinear stress-versus-strain-rate relationship for the dashpots. Work hardening is obtained by the evolution of a state variable that represents internal stress. We determine the flow law parameters for dunites using a Markov chain Monte Carlo method. We find the activation energy $$430\pm 20$$ 430 ± 20   and $$250\pm 10$$ 250 ± 10  kJ/mol for dry and wet conditions, respectively, and the stress exponent $$2.0\pm 0.1$$ 2.0 ± 0.1 for both the dry and wet cases for transient creep, consistently lower than those of steady-state creep, suggesting a separate physical mechanism. For wet dunites in the grain-boundary sliding regime, the grain-size dependence is similar for transient creep and steady-state creep. The lower activation energy of transient creep could be due to a higher jog density of the corresponding soft-slip system. More experimental data are required to estimate the activation volume and water content exponent of transient creep. The constitutive relation used and its associated flow law parameters provide useful constraints for geodynamics applications. Graphical Abstract


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5973
Author(s):  
Qian Jiang ◽  
Abhishek Nitin Deshpande ◽  
Abhijit Dasgupta

Heterogeneous integration is leading to unprecedented miniaturization of solder joints, often with thousands of joints within a single package. The thermomechanical behavior of such SAC solder joints is critically important to assembly performance and reliability, but can be difficult to predict due to the significant joint-to-joint variability caused by the stochastic variability of the arrangement of a few highly-anisotropic grains in each joint. This study relies on grain-scale testing to characterize the mechanical behavior of such oligocrystalline solder joints, while a grain-scale modeling approach has been developed to assess the effect of microstructure that lacks statistical homogeneity. The contribution of the grain boundaries is modeled with isotropic cohesive elements and identified by an inverse iterative method that extracts material properties by comparing simulation with experimental measurements. The properties are extracted from the results of one test and validated by verifying reasonable agreement with test results from a different specimen. Equivalent creep strain heterogeneity within the same specimen and between different specimens are compared to assess typical variability due to the variability of microstructure.


Author(s):  
Mainak Saha

Creep deformation in single phase ɤ-TiAl alloy manufactured using different processing techniques has been an extensively studied topic since the late 1970s. The present work revisits the original work on understanding the tensile creep deformation behaviour of wrought single-phase ɤ-TiAl alloy by Hayes and Martin [1] and is aimed to develop an understanding of steady state creep. Besides, it is also aimed to investigate the creep life for stress levels of 69.4 and 103.4 MPa at 832 ⁰C using Monkman-Grant [2] approach.


2021 ◽  
Author(s):  
Mainak Saha

Abstract Creep deformation in single phase ɤ-TiAl alloy manufactured using different processing techniques has been an extensively studied topic since the late 1970s. The present work revisits the original work on understanding the tensile creep deformation behaviour of wrought single-phase ɤ-TiAl alloy by Hayes and Martin [1] and is aimed to develop an understanding of steady state creep. Besides, it is also aimed to investigate the creep life for stress levels of 69.4 and 103.4 MPa at 832 ⁰C using Monkman-Grant [2] approach.


2021 ◽  
Author(s):  
Jiabing Zhang ◽  
Xiaohu Zhang ◽  
Zhen Huang ◽  
Helin Fu

Abstract The layered surrounding rocks of deep tunnels undergo large creep deformation due to the presence of planes of weakness and the presence of prolonged high in-situ stress, thereby the deformation severely endangers the safety of tunnels. This study conducts uniaxial compression creep tests to experimentally investigate the transversely isotropic creep characteristics and the damage mechanism of layered phyllite samples having bedding angles of 0°, 22.5°, 45°, 67.5°, and 90°. The results indicate that the creep deformation of the specimens takes place in four stages: the instantaneous elastic deformation stage, the deceleration creep stage, the steady-state creep stage, and the accelerated creep stage. The cumulative creep deformation and the creep time during the steady-state creep stage of the specimens initially decrease and then increase as the bedding angle changes from 0° to 90°, thereby, corresponding to the initial increase and subsequent decrease in creep rate during the deceleration creep stage. Based on the existing viscoelastic-plastic damage creep model, the creep parameters E1, E2, η2, and η3 are observed to initially decrease and then increase with the increase in bedding angle, hence demonstrating that the creep characteristics and damage mechanism of the layered rock mass are controlled by the effect of the natural weakness planes and show significant transversely isotropic characteristics.


2021 ◽  
Author(s):  
Qian Jiang ◽  
Abhishek Deshpande ◽  
Abhijit Dasgupta

2021 ◽  
Vol 1035 ◽  
pp. 206-211
Author(s):  
Zi Chao Peng ◽  
Jin Wen Zou ◽  
Lei Zhou ◽  
Xu Qing Wang

The creep properties of FGH96 superalloy were studied in the temperature range of 650 °C to 750 °C and stress range of 690MPa to 897MPa. The results show that the creep life of the alloy decreased significantly with the increase of stress and temperature. However, the temperature produced more effects than that of stress. The most suitable service temperature and stress were also obtained based on the creep results. A physical model base on crystal-plasticity theory was established, but the simplification of the Helmholtz free energy and the activation volume might reduce the accuracy of strain rate prediction. Based on the results of creep at different stresses and temperatures, the Helmholtz free energy and the activation volume of steady-state creep were obtained, which would play a key role in creep life prediction.


Sign in / Sign up

Export Citation Format

Share Document