Conversion of Carbon Dioxide into Several Potential Chemical Commodities Following Different Pathways - A Review

2013 ◽  
Vol 764 ◽  
pp. 1-82 ◽  
Author(s):  
Ibram Ganesh

This article reviews the literature related to the direct uses of CO2and its conversion into various value added chemicals including high energy density liquid fuels such as methanol. The increase in the direct uses of CO2and its conversion into potential chemical commodities is very important as it directly contributes to the mitigation of CO2related global warming problem. The method being followed at present in several countries to reduce the CO2associated global warming is capturing of CO2at its major outlets using monoethanolamine based solution absorption technique followed by storing it in safe places such as, oceans, depleted coal seams, etc., (i.e., carbon dioxide capturing and storing in safe places, CCS process). This is called as CO2sequestration. Although, the CCS process is the most understood and immediate option to mitigate the global warming problem, it is considerably expensive and has become a burden for those countries, which are practicing this process. The other alternative and most beneficial way of mitigating this global warming problem is to convert the captured CO2into certain value added bulk chemicals instead of disposing it. Conversion of CO2into methanol has been identified as one of such cost effective ways of mitigating global warming problem. Further, if H2is produced from exclusively water using only solar energy instead of any fossil fuel based energy, and is used to convert CO2into methanol there are three major benefits: i) it contributes greatly to the global warming mitigation problem, ii) it greatly saves fossil fuels as methanol production from CO2could be an excellent sustainable and renewable energy resource, and iii) as on today, there is no better process than this to store energy in a more convenient and highly usable form of high energy density liquid fuel. Not only methanol, several other potential chemicals and value added chemical intermediates can be produced from CO2. In this article, i) synthesis of several commodity chemicals including poly and cyclic-carbonates, sodium carbonate and dimethyl carbonate, carbamates, urea, vicinal diamines, 2-arylsuccinic acids, dimethyl ether, methanol, various hydrocarbons, acetic acid, formaldehyde, formic acid, lower alkanes, etc., from CO2, ii) the several direct uses of CO2, and iii) the importance of producing methanol from CO2using exclusively solar energy are presented, discussed and summarized by citing all the relevant and important references.

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Author(s):  
Peter Rez

Transportation efficiency can be measured in terms of the energy needed to move a person or a tonne of freight over a given distance. For passengers, journey time is important, so an equally useful measure is the product of the energy used and the time taken for the journey. Transportation requires storage of energy. Rechargeable systems such as batteries have very low energy densities as compared to fossil fuels. The highest energy densities come from nuclear fuels, although, because of shielding requirements, these are not practical for most forms of transportation. Liquid hydrocarbons represent a nice compromise between high energy density and ease of use.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


Author(s):  
Zhenyu Hu ◽  
Liping Hao ◽  
Fan Quan ◽  
Rui Guo

The demand for the development of clean and efficient energy is becoming more and more pressing due to depleting fossil fuels and environmental concerns. Hydrogen is a high energy density...


2020 ◽  
Vol 74 (9) ◽  
pp. 667-673
Author(s):  
Ali Coskun

CO2 emissions into the atmosphere account for the majority of environmental challenges and its global impact in the form of climate change is well-documented. Accordingly, the development of new materials approaches to capture and convert CO2 into value-added products is essential. Whereas the increased availability of renewable energy is curbing our reliance on fossil fuels and decreasing CO2 emissions, the widespread adaptation of renewable energy still requires the development of high energy density batteries i.e., lithium ion batteries (LIBs). To address these energy and environmental challenges, our group has been developing porous organic polymers (POPs) with precise control over their porosity and surface chemistry for CO2 capture, separation and conversion. To realize simultaneous CO2 separation and conversion, we are also developing catalytically active two-dimensional membranes and POPs. In the area of LIBs, we have recognized the potential of supramolecular chemistry as a general strategy for solving the capacity-fading problem associated with high energy density electrode materials such as Li-metal, silicon and sulfur, which offer extremely high battery capacity compared to conventional LIBs. Accordingly, we have demonstrated how molecular-level design of one- and two-dimensional supramolecular polymers can be directly translated into an improved electrochemical performance in high energy density LIBs.


2014 ◽  
Vol 1644 ◽  
Author(s):  
Renate Kellermann ◽  
Dan Taroata ◽  
Martin Schiemann ◽  
Helmut Eckert ◽  
Peter Fischer ◽  
...  

ABSTRACTIn this work, electrochemically recyclable lithium is analyzed as high energy density, large scale storage material for stranded renewable energy in a closed loop. The strongly exothermic reaction of lithium with carbon dioxide (CO2) yields thermal energy directly comparable to the combustion of coal or methane in an oxygen containing atmosphere. The thermal level of the reaction is sufficient for re-electrification in a thermal power plant compatible process.The reaction of single lithium particles, avoiding particle-particle interactions, is compared to the combustion of atomized lithium spray in a CO2 containing atmosphere. Particle temperatures of up to 4000K were found for the reaction of single lithium particles in a CO2, nitrogen (N2), oxygen (O2) and steam gas mixture. Furthermore the combustion of atomized lithium spray in both dry CO2 atmosphere and CO2/steam gas mixture was analyzed. The identified solid reaction products are lithium carbonate, lithium oxide and lithium hydroxide. The formation of carbon monoxide (CO) as gaseous reaction product is demonstrated. Carbon monoxide is a valuable by-product, which could be converted to methanol or gasoline using hydrogen.


2016 ◽  
Vol 4 (9) ◽  
pp. 3446-3452 ◽  
Author(s):  
Mohammad Ali Mahmoudzadeh ◽  
Ashwin R. Usgaocar ◽  
Joseph Giorgio ◽  
David L. Officer ◽  
Gordon G. Wallace ◽  
...  

An integrated solar energy conversion and storage system is presented using a dye sensitized electrode in a redox battery structure.


2018 ◽  
Vol 47 (22) ◽  
pp. 8349-8402 ◽  
Author(s):  
Putla Sudarsanam ◽  
Ruyi Zhong ◽  
Sander Van den Bosch ◽  
Simona M. Coman ◽  
Vasile I. Parvulescu ◽  
...  

Functionalised heterogeneous catalysts show great potentials for efficient valorisation of renewable biomass to value-added chemicals and high-energy density fuels.


2019 ◽  
pp. 39-43
Author(s):  
Leif Jilkén

Thermoplastic waste from industrial enterprises and commerce constitutes a considerable potential for conservation of energy resources. Another energy resource is organic fibres, such as woodfibres from waste. By ad ding waste fibres and thermoplastic waste in a composite ENCO we have got a new fuel pellet/material. Thermoplastic waste from polyethylene (P E) and polypropylene (PP) together with woodfibres are used in ENCO to reach a high energy density.


Sign in / Sign up

Export Citation Format

Share Document