Tool Life of Coated Tools in Face Milling of GH4169 at Various Cutting Speeds

2013 ◽  
Vol 770 ◽  
pp. 126-129 ◽  
Author(s):  
Xiang Yu Wang ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Qing Ge Zhang ◽  
Han Lian Liu ◽  
...  

GH4169 is widely used in aerospace industry, and it is a typical difficult-to-cut material. Tool life in cutting GH4169 is very low. In this paper, tool life tests of face milling GH4169 were carried out at 30~90m/min with coated tools. The effects of cutting speed and feed rate on the tool life were studied. It was found that the tool life was very sensitive to the cutting speed. And tool failure mode was flank wear at low cutting speed, but turned to tipping at high cutting speed. At last, the suitable cutting parameters were recommended.

Author(s):  
Paolo Albertelli ◽  
Valerio Mussi ◽  
Matteo Strano ◽  
Michele Monno

AbstractIn this paper, the results of an experimental campaign of cryogenic milling are presented and discussed. For this purpose, a specific experimental setup that allowed to feed the liquid nitrogen LN through the tool nozzles was used. Tool life tests were carried out at different cutting speeds. The tool duration data were collected and used to identify the parameters of the Taylor’s model. Different end-of-life criteria for the tool inserts were even investigated. The achieved results are compared to those obtained using conventional cooling. It was observed that at low cutting velocity, conventional cooling still assures longer tool lives than in cryogenic condition. Since in cryogenic milling the increasing of the cutting velocity is not so detrimental as in conventional cutting, at high cutting speed (from 125 m/min) longer tool durations can be achieved. Statistical analyses on the model parameters were carried out to confirm the presented findings. The analysis of the effect of the cooling approach on the main wear mechanisms was also reported. At low cutting speed, adhesion and chipping phenomena affected the tool duration mainly in cryogenic milling.


2010 ◽  
Vol 26-28 ◽  
pp. 1052-1055
Author(s):  
Li Fa Han ◽  
Sheng Guan Qu

The wear characteristics and life of Al2O3/(W,Ti)C ceramic tool in turning NbCp-reinforced iron-based P/M composites was investigated. Experimental results indicate that cutting parameters have an influence on tool wear, among which cutting speed and depth of cut seem to be more prominent. The maximum flank wear rapidly increases as the increase in cutting speed and depth of cut. While, it increases gradually as the decrease in feed rate. Meanwhile, an empirical model of tool life is established, from which the influence of cutting speed and depth of cut on tool life is far greater than that of feed rate. Also from the empirical model, the preferable range of cutting parameters was obtained.


Author(s):  
Patricia Mun˜oz de Escalona ◽  
Paul G. Maropoulos

During a machining process, cutting parameters must be taken into account, since depending on them the cutting edge starts to wear out to the point that tool can fail and needs to be change, which increases the cost and time of production. Since wear is a negative phenomenon on the cutting tool, due to the fact that tool life is reduced, it is important to optimize the cutting variables to be used during the machining process, in order to increase tool life. This research is focused on the influence of cutting parameters such as cutting speed, feed per tooth and axial depth of cut on tool wear during a face milling operation. The Taguchi method is applied in this study, since it uses a special design of orthogonal array to study the entire parameters space, with only few numbers of experiments. Also a relationship between tool wear and the cutting parameters is presented. For the studies, a martensitic 416 stainless steel was selected, due to the importance of this material in the machining of valve parts and pump shafts.


Author(s):  
Xianhua Tian ◽  
Kuicheng Yan ◽  
Zhi Wang ◽  
Fangwei Xie ◽  
Ya Liu ◽  
...  

Machining quality and productivity of superalloys are limited due to their poor machinability, and fewer studies have focused on the cutting of iron-based superalloys. In this study, the cutting performance of coated and uncoated carbide tools in high-speed dry turning iron-based superalloy GH2132 was investigated by performing a series of cutting experiments. The experimental results indicated that cutting temperature and cutting forces increased, while tool life decreased with the increase in the cutting speed from 30 to 100 m/min. Under relatively low cutting speeds, flank face wear was dominated by abrasion and adhesion, while rake face wear mainly involved built-up edge (BUE), built-up layer (BUL), adhesion, and breakage near the depth of cut. Under higher cutting speed, adhesion wear was more serious on the flank face, and peeling off of the coatings and substrate occurred on the rake face. Owing to the protective effect of (Ti, Al)N + TiN coating, the coated tools exhibited better wear resistance and thus longer tool life, in particular, under higher cutting speeds. Analysis of the tool wear gap in the horizontal direction indicates that better dimensional accuracy could be obtained when coated tools are used. In dry turning of GH2132 with carbide tools, a favorable surface finish could be obtained. The surface roughness roughly showed a tendency to first decrease and then increase with the increase in average flank wear. The coated tools should be avoided to machine GH2132 at higher cutting speed due to the poor surface finish.


2012 ◽  
Vol 723 ◽  
pp. 77-81 ◽  
Author(s):  
Xiao Bin Cui ◽  
Jun Zhao

In the present study, face milling of AISI H13 steel (46-47 HRC) with CBN tools was conducted. Cutting speeds 389 and 1592 m/min were adopted in order to identify the characteristics of cutting force and tool wear at low and high cutting speeds. For each cutting speed, the metal removal rate and axial depth of cut were set to be invariable, and different combinations of radial depth of cut and feed per tooth were selected. The optimum combination of radial depth of cut and feed per tooth for each cutting speed was distinguished. For different cutting speeds, the cutting force changed in varying ways with different combinations of cutting parameters. At the cutting speed of 389 m/min, after the initial cutting stage, the tool wear rate was low even at the end of tool life. When the cutting speed was 1592 m/min, the tool wear increased rapidly, and the tool wear rate changed little in the whole tool life span. Adhesion and abrasion were the main wear mechanisms of the tool faces at the cutting speed of 389 m/min. While at the cutting speed of 1592 m/min, fracture contributed greatly to the final tool failure.


2019 ◽  
Vol 26 (08) ◽  
pp. 1850230
Author(s):  
A. AKHAVAN FARID ◽  
MOHAMMAD LOTFI ◽  
M. JAHANBAKHSH

Long tool life and high material removal rate (MRR) are the two essential requirements in rough cutting of materials. The rapid rate of the flank wear propagation in machining of nickel-based superalloys has induced the utilization of low cutting parameters when the goal was set to maximize the tool life based on the machining time or cutting length. However, this method may not provide an effective rate for the material being cut. This work presents two mathematical models to find the optimum cutting parameters results for the minimum flank wear and maximum MRR. Experimental tests were carried out based on the central composite design (CCD) in rough cutting of Inconel 625 by using TiAlN-coated insert. Maximum flank wear was measured to determine the tool wear propagation. The wear mechanisms which contribute in the tool wear were analyzed by using scanning electron microscope (SEM) to evaluate the effects of cutting parameters on the flank wear propagation. The results showed that cutting speed and depth of cut had the most significant effect on the tool wear. However, optimum cutting condition was achieved by reducing the cutting speed when feed rate and depth of cut maintained at the highest level. This was associated to the interaction of cutting speed and depth of cut, and predominant of abrasion and notching at their highest levels, respectively.


2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1014 ◽  
Author(s):  
Sánchez Hernández ◽  
Trujillo Vilches ◽  
Bermudo Gamboa ◽  
Sevilla Hurtado

In this work, the analysis of the cutting speed and feed rate influence on tool wear and cutting forces in Ti6Al4V alloy dry machining is presented. The study has been focused on the machining in a transient state. The tool wear mechanisms, tool wear intensity and cutting forces evolution have been analyzed as a function of the cutting parameters. Experimental results show that the main cutting force amplitude exhibits a general trend to increase with both cutting parameters. Crater wear was more evident at high cutting speeds, whereas flank wear was present on the whole interval of the cutting parameters analyzed. Furthermore, the cutting speed shows a slightly higher influence on crater wear and the feed rate shows a higher influence on flank wear. Finally, several experimental parametric models have been obtained. These models allow predicting the evolution of crater and flank tool wear, as well as the cutting forces, as a function of the cutting parameters. Additionally, a model that allows monitoring the tool wear on the machining transient state as a function of the main cutting force amplitude has been developed.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 447 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Alexander Metel ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
...  

This paper deals with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating. It has a three-layered architecture with a nano-structured wear-resistant layer. The studies involved the investigation into the microstructure (with the use of SEM and TEM), elemental and phase composition (XRD and SAED patterns), wear process pattern in scratch testing, crystal structure, as well as the microhardness of the coating. Cutting tests of tools with the above coating were carried out in dry turning of steel 1045 at cutting speeds of vc = 200, 250, and 300 m·min−1. The comparison included uncoated tools and tools with the commercial TiN and (Ti,Al)N coatings with the same thickness. The tool with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating showed the longest tool life at all the cutting speeds under consideration. Meanwhile, a tool with the coating under study can be recommended for use in turning constructional steel at the cutting speed of vc = 250 m·min−1. At this cutting speed, a tool shows the combination of a rather long tool life and balanced wear process, without any threat of catastrophic wear.


2016 ◽  
Vol 874 ◽  
pp. 487-491
Author(s):  
Takayuki Kitajima ◽  
Takumi Horiuchi ◽  
Akinori Yui ◽  
Yosuke Ito

Carbon-fiber-reinforced plastic (CFRP) is used in various industries such as aerospace and automobile industries because of its high mechanical characteristics. However, this material is difficult to cut. Tool wear and delamination frequently occur during the drilling or cutting of CFRP. In previous studies, we developed a CFRP cutting tool using polycrystalline diamond (PCD). The PCD tool exhibited excellent cutting performance at cutting speeds as low as <120 m/min. In this study, the authors investigated the effect of cutting speed on the face milling of CFRP by using the developed PCD tool.


Sign in / Sign up

Export Citation Format

Share Document