Evaluation of Buried Grid JBS Diodes

2014 ◽  
Vol 778-780 ◽  
pp. 804-807 ◽  
Author(s):  
Jang Kwon Lim ◽  
Dimosthenis Peftitsis ◽  
Diane Perle Sadik ◽  
Mietek Bakowski ◽  
Hans Peter Nee

The 4H-SiC Schottky barrier diodes for high temperature operation over 200 °C have been developed using buried grids formed by implantation. Compared to a conventional JBS-type SBD with surface grid (SG), JBS-type SBD with buried grid (BG) has significantly reduced leakage current at reverse bias due to a better field shielding of the Schottky contact. By introducing the BG technology, the 1.7 kV diodes with an anode area 0.0024 cm2(1 A) and 0.024 cm2(10 A) were successfully fabricated, encapsulated in TO220 packages, and electrically evaluated. Two types of buried grid arrangement with different grid spacing dimensions were investigated. The measured I-V characteristics were compared with simulation. The best fit was obtained with an active area of approximately 60 % and 70 % of the anode area in large and small devices, respectively. The measured values of the device capacitances were 1000 pF in large devices and 100 pF in small devices at zero bias. The capacitance values are proportional to the device area. The recovery behavior of big devices was measured in a double pulse tester and simulated. The recovery charge, Qc, was 18 nC and 24 nC in simulation and measurement, respectively. The fabricated BG JBS-type SBDs have a smaller maximum reverse recovery current compared to the commercial devices. No influence of the different grid spacing on the recovery charge was observed.

1993 ◽  
Vol 48 (24) ◽  
pp. 17986-17994 ◽  
Author(s):  
M. H. Yuan ◽  
H. Z. Song ◽  
S. X. Jin ◽  
H. P. Wang ◽  
Y. P. Qiao ◽  
...  

1993 ◽  
Vol 319 ◽  
Author(s):  
M.H. Yuan ◽  
Y.Q. Jia ◽  
G.G. Qin

AbstractAu/n-Si Schottky barrier (SB) incorporated by hydrogen has a 0.13 eV lower SB height (SBH) than that without hydrogen incorporation. For the hydrogen-containing SB, zero bias annealing (ZBA) decreases the SBH while reverse bias annealing (RBA) increases it. Besides, the ZBA and RBA cycling experiments reveal a reversible change of the SBH with in at least three cycles. The higher annealing temperature of RBA results in higher SBH. We interpret the above experimental facts as that hydrogen has an effect on metal-semiconductor interface states and then on the SBH, and both the bias on SB and temperature of annealing can influence the hydrogen effects on metal-semiconductor interface states.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000058-000060
Author(s):  
Tomas Hjort ◽  
Adolf Schöner ◽  
Andy Zhang ◽  
Mietek Bakowski ◽  
Jang-Kwon Lim ◽  
...  

Electrical characteristics of 4H-SiC Schottky barrier diodes, based on buried grid design are presented. The diodes, rated to 1200V/10A and assembled into high temperature capable TO254 packages, have been tested and studied up to 250°C. Compared to conventional SiC Schottky diodes, Ascatron's buried grid SiC Schottky diode demonstrates several orders of magnitude reduced leakage current at high temperature operation.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax5733 ◽  
Author(s):  
T. Harada ◽  
S. Ito ◽  
A. Tsukazaki

High-temperature operation of semiconductor devices is widely demanded for switching/sensing purposes in automobiles, plants, and aerospace applications. As alternatives to conventional Si-based Schottky diodes usable only at 200°C or less, Schottky interfaces based on wide-bandgap semiconductors have been extensively studied to realize a large Schottky barrier height that makes high-temperature operation possible. Here, we report a unique crystalline Schottky interface composed of a wide-gap semiconductor β-Ga2O3 and a layered metal PdCoO2. At the thermally stable all-oxide interface, the polar layered structure of PdCoO2 generates electric dipoles, realizing a large Schottky barrier height of ~1.8 eV, well beyond the 0.7 eV expected from the basal Schottky-Mott relation. Because of the naturally formed homogeneous electric dipoles, this junction achieved current rectification with a large on/off ratio approaching 108 even at a high temperature of 350°C. The exceptional performance of the PdCoO2/β-Ga2O3 Schottky diodes makes power/sensing devices possible for extreme environments.


2019 ◽  
Vol 130 ◽  
pp. 233-240
Author(s):  
Sheng Li ◽  
Chi Zhang ◽  
Siyang Liu ◽  
Jiaxing Wei ◽  
Long Zhang ◽  
...  

2016 ◽  
Vol 858 ◽  
pp. 741-744 ◽  
Author(s):  
Besar Asllani ◽  
Maxime Berthou ◽  
Dominique Tournier ◽  
Pierre Brosselard ◽  
Phillippe Godignon

This paper presents a study of the Schottky barrier evolution on SBD and JBS diodes over a wide range of temperatures from 80 to 500 K. We show that inhomogeneities of the Schottky contact have a strong impact on the dependence of barrier characteristics with temperature, especially below 200 K. Analysis of the reverse bias current of such diodes at low temperature show that the barrier height depends on temperature but also on voltage.


2020 ◽  
Vol 8 ◽  
pp. 614-618
Author(s):  
M. Malakoutian ◽  
M. Benipal ◽  
F. A. Koeck ◽  
R. J. Nemanich ◽  
S. Chowdhury

1994 ◽  
Vol 43 (6) ◽  
pp. 1017
Author(s):  
YUAN MIN-HUA ◽  
QIAO YONG-PING ◽  
SONG HAI-ZHI ◽  
JIN SI-XIAN ◽  
QIN GUO-GANG

2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  

Alloy Digest ◽  
2008 ◽  
Vol 57 (6) ◽  

Abstract Kubota UCX was developed for very high temperature operation for ethylene pyrolysis service. The alloy also has excellent oxidation and corrosion resistance. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting and joining. Filing Code: Ni-663. Producer or source: Kubota Metal Corporation, Fahramet Division.


Sign in / Sign up

Export Citation Format

Share Document