Wear Behaviour of Two Different Cemented Carbide Grades in Turning 316 L Stainless Steel
Cemented carbides are the most common cutting tools for machining various grades of steels. In this study, wear behavior of two different cemented carbide grades with roughly the same fraction of binder phase and carbide phase but different grain size, in turning austenitic stainless steel is investigated. Wear tests were carried out against 316L stainless steel at 180 and 250 m/min cutting speeds.The worn surface of cutting tool is characterized using high resolution scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES) and 3D optical profiler.The wear of cemented carbide in turning stainless steel is controlled by both chemical and mechanical wear. Plastic deformation, grain fracture and chemical wear is observed on flank and rake face of the cutting insert. In the case of fine-grained, the WC grains has higher surface contact with the adhered material which promotes higher chemical reaction and degradation of WC grains, so chemical wear resistance of the composites is larger when WC grains are larger. The hardness of cemented carbide increase linearly by decreasing grain size, therefore mechanical wear resistance of the composites is larger when WC grains are smaller.