Effect of grain size on wear behaviour of alumina cutting tools

Wear ◽  
1997 ◽  
Vol 206 (1-2) ◽  
pp. 24-32 ◽  
Author(s):  
G.K.L Goh ◽  
L.C Lim ◽  
M Rahman ◽  
S.C Lim
2018 ◽  
Vol 941 ◽  
pp. 2367-2372 ◽  
Author(s):  
Sara Saketi ◽  
Ulf Bexell ◽  
Jonas Östby ◽  
Mikael Olsson

Cemented carbides are the most common cutting tools for machining various grades of steels. In this study, wear behavior of two different cemented carbide grades with roughly the same fraction of binder phase and carbide phase but different grain size, in turning austenitic stainless steel is investigated. Wear tests were carried out against 316L stainless steel at 180 and 250 m/min cutting speeds.The worn surface of cutting tool is characterized using high resolution scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES) and 3D optical profiler.The wear of cemented carbide in turning stainless steel is controlled by both chemical and mechanical wear. Plastic deformation, grain fracture and chemical wear is observed on flank and rake face of the cutting insert. In the case of fine-grained, the WC grains has higher surface contact with the adhered material which promotes higher chemical reaction and degradation of WC grains, so chemical wear resistance of the composites is larger when WC grains are larger. The hardness of cemented carbide increase linearly by decreasing grain size, therefore mechanical wear resistance of the composites is larger when WC grains are smaller.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 895 ◽  
Author(s):  
Luca Boccarusso ◽  
Fabio Scherillo ◽  
Umberto Prisco

Microstructure, hardness, transverse rupture strength, and abrasion resistance of WC-10 wt% Co cemented carbides modified with the addition of different mass fraction of Cr3C2, in the range of 0–3 wt%, are studied. The influence of the microstructure, composition and hardness on the mechanical properties and wear resistance is analysed. Considering that the material under investigation can be used as die for the extrusion process of hard ceramic materials, the tribological behaviour was evaluated by performing sliding wear tests in wet conditions using a block-on-ring tribometer. Wear mechanism principally based on binder removal and subsequent fragmentation and microabrasion of the WC grains is proposed. Carbide grain size and bulk hardness can be tuned as function of specific applications by adding different amounts of Cr3C2. In particular, increasing hardness and reducing grain size by the addition of Cr3C2 are demonstrated to considerably enhance the wear performance of these carbides.


2013 ◽  
Vol 685 ◽  
pp. 15-18 ◽  
Author(s):  
Kerim Emre Öksüz ◽  
Hanlar Bağirov ◽  
Hasan Yilmaz ◽  
Buket Silahşor ◽  
Vedat Yildirim

Keywords: Boron Carbide; Silisium Carbide; Composite; Powder Metallurgy. Abstract : In this study, effect of boron carbide (B4C), aluminium oxide (Al2O3) and silisium carbide (SiC) addition on microstructure and mechanical properties of diamond cutting segments was investigated. The effects of reinforcement particle additions on characteristic of CuSn matrix composites have been investigated. For this purpose, Al2O3, SiC and B4C addition quantity was added as 2 wt.%. Samples of segments were processed by cold pressing at 550 MPa, followed by sintering at 850°C/30min. Micro-structural aspects were observed by optical microscope. Density, hardness and wear tests were also performed. Wear behaviour and hardness values of segments changed depending on aluminium oxide, silisium carbide and boron carbide addition. The alloy CuSn– 2 wt.%. B4C presented the best results, available for use in cutting tools.


1993 ◽  
Vol 2 (5-7) ◽  
pp. 928-932 ◽  
Author(s):  
T.H. Huang ◽  
C.T. Kuo ◽  
T.S. Lin ◽  
C.S. Chang

2013 ◽  
Vol 577-578 ◽  
pp. 53-56
Author(s):  
Patricia Alveen ◽  
Declan McNamara ◽  
Declan Carolan ◽  
Neal Murphy ◽  
Alojz Ivanković

Advanced ceramics are a class of materials used as cutting tools in some of the most demanding material removal operations. Their high hardness makes them extremely suited for use at these extreme conditions. However they have a relatively low fracture toughness when compared to other conventional tool materials. A combined experimental-numerical method was used to investigate the role of microstructure on the fracture of advanced ceramics. In particular, the effect of grain size and matrix content were examined. Representative finite volume (FV) microstructures were created using Voronoi tessellation. It is shown, by comparing with real micrographs, that the method captures the features of real microstructures in terms of grain size distribution and grain aspect ratio. It was found that the underlying microstructure significantly affects the failure of this class of materials. Furthermore, it was found that by altering the microstructural parameters in the numerical model, such as grain size and matrix content, it is possible to specify material improvements.


Wear ◽  
1976 ◽  
Vol 37 (1) ◽  
pp. 69-75 ◽  
Author(s):  
H.S. Shan ◽  
P.C. Pandey
Keyword(s):  

Author(s):  
J Jabinth ◽  
N Selvakumar

In the present study, copper along with secondary hybrid reinforcements like Vanadium (V) and Graphene-L (Gr-L) with various proportions like pure Cu, Cu-2V, Cu-2V-0.5Gr, Cu-2V-1Gr, Cu-2V-1.5Gr are added to evaluate the behaviour of Copper Matrix Composite. The evenly dispersion of heterogeneous Copper Matrix Composite is achieved by the economical stir casting process. The heterogeneous mixture with metallic materials is a promising strategy to improve the properties of CMC. The prepared specimen is subjected to various testing processes to test the properties like Tensile strength, hardness, Yield strength, Impact strength and wear behaviours. The grain formation of hybrid CMC is also studied using an optical microscope to see the relationship between strength and grain size. The characterization of hybrid CMC is done by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Energy Dispersive X-ray Spectroscopy. Fractography is also done to investigate the debonding mechanism of heterogeneous composites. The wear behavior of the hybrid composite is examined by Pin-on-disc tribometer. The results obtained, shows that, there is a reduction in grain size with the increase in addition of vanadium and graphene-L. The decrease in grain size has directly contributed to the improvement of mechanical properties of CMC. There is also an enhancement in wear behavior such as improvement in co-efficient of friction and wear resistance with increase in hybrid composition. This paves a new strategy and acts as a reliable reinforcement to improve the behaviour of copper based metal matrix composites.


2011 ◽  
Vol 66-68 ◽  
pp. 1500-1504 ◽  
Author(s):  
Ming Wen ◽  
Cui'e Wen ◽  
Peter D. Hodgson ◽  
Yun Cang Li

A nanocrystalline (NC) layer with the thickness of 30 µm was produced on pure titanium surface by surface mechanical attrition treatment (SMAT). Microstructure observation indicated that the grain size increases with depth from the treated surface. The friction coefficient decreases and the wear resistance increases with the SMAT sample as compared to its coarse-grained counterpart. The improvement of the wear properties could be attributed to the higher hardness of SMAT sample.


Author(s):  
Max Radetzky ◽  
Tom Stürwold ◽  
Stefan Bracke
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Licai Fu ◽  
Jun Yang ◽  
Qinling Bi ◽  
Weimin Liu

Wear behaviour of nanocrystalline Fe88Si12alloy has been investigated in water environment compared with the coarse grained counterpart. The friction coefficient of the Fe88Si12alloy changes slightly with the grain size. The wear resistance is enhanced as the grain size decreases first and then reduces when the grain size continues to decrease, although the hardness of the Fe88Si12alloy decreases monotonically with the grain size. It is contrary to the predications of Archard’s formula. The best wear resistance of Fe88Si12alloy with grain size of 40 nm in our present work is attributed to the proper grain boundary volume fraction and composite phase structures of disordered B2 and ordered D03.


Sign in / Sign up

Export Citation Format

Share Document