Research on the Mechanism and Microstructure of an Al-Ti-C Parent Alloy Prepared Using the Villiaumite–Woodchip Method
X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, differential scanning calorimetry, and thermogravimetric analysis were used to study the microstructure and properties of an Al-Ti-C parent alloy prepared using the villiaumite–woodchip method. The synthesis process of the Al-Ti-C parent alloy prepared using the villiaumite–woodchip method and aluminum liquid had the following stages: The first stage was the formation of titanium aluminum by titanium being displaced from the reaction between aluminum and villiaumite. The second stage was the dehydration and carbonization reactions of the woodchips at high temperatures. The third stage involved titanium aluminum, carbon aluminum, and titanium carbon compounds constitute the Al-Ti-C parent alloy with a refined effect water and carbon dioxide, which were the cracking products of the woodchips, reacted with aluminum to produce alumina and hydrogen, which accumulated in the grain boundary in the form of slag-gas pockets.