Studies of Iron-Doped Carbon Material from Carbonization of Soy Protein/Polyaniline Composite and its Electrical Capacitance
Protein gel of soy was formed immediately during polymerization of aniline initiated by certain amount of FeCl3. In order to obtain iron-doped carbon material, this composite was then carbonized at 700°C under nitrogen atmosphere for 5h. SEM, FT-IR, XRD, and isothermal desorption/adsorption technologies were employed to characterize morphology and structure of the material. Electrical capacitance of iron-doped carbon materials and performance of a prototype supercapacitor based on the material as its electrodes were measured by cyclic voltammetry, chronopotentiometry, and A.C. impedance respectively. Results show that morphology of as-obtained material is porous and hierachical, specific surface area of the material is 232.1m2/g, and specific capacitance of the material can reach 475.2F/g in 6 M KOH aqueous solution. Energy density and power density of the cell is 2.1Wh/kg and 2.0kW/kg, respectively. Capacity retention of the device is 100% after 5000 cycles at a current density of 2A/g. The above studies imply that this original iron-doped carbon material will have a good potential application in field of energy storage.