Computational Study of Au Doped Cu Nano Alloy Clusters
Among several bimetallic nanoclusters, the compounds formed between Cu-Au have gained immense importance due to its remarkable optical, mechanical, electronic and catalytic behaviors. Density Functional Theory (DFT) is one of the most successful and popular approaches of quantum mechanics to explore electronic properties of materials. Conceptual DFT based descriptors have become indispensable tools for analyzing and correlating the experimental properties of compounds. In this venture, we have successfully investigated the physico-chemical properties of Au doped Cu nanoclusters invoking DFT methodology. Our results reveal that computed HOMO-LUMO gap of CunAu (n=1-7) nanoalloy clusters show pronounced even-odd alternation behavior. A close agreement between experimental and our computed data is observed.