Nonstructural Protein NSs Hampers Cellular Antiviral Response through LSm14A during Severe Fever with Thrombocytopenia Syndrome Virus Infection

2021 ◽  
pp. ji2100148
Author(s):  
Li Zhang ◽  
Yuxuan Fu ◽  
Rui Zhang ◽  
Yajie Guan ◽  
Na Jiang ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2048
Author(s):  
Zhen Wang ◽  
Shaotang Ye ◽  
Congwen Yao ◽  
Ji Wang ◽  
Jianwei Mao ◽  
...  

RIG-I functions as a virus sensor that induces a cellular antiviral response. Although it has been investigated in other species, there have been no further studies to date on canine RIG-I against canine influenza virus (CIV). In the present study, we cloned the RIG-I gene of beagle dogs and characterized its expression, subcellular localization, antiviral response, and interactions with CIV proteins. RIG-I was highly expressed and mainly localized in the cytoplasm, with low levels detected in the nucleus. The results revealed that overexpression of the CARD domain of RIG-I and knockdown of RIG-I showed its ability to activate the RLR pathway and induced the expression of downstream interferon-stimulated genes. Moreover, overexpression of canine RIG-I suppressed the replication of CIV. The association between RIG-I and CIV was evaluated with the luciferase assay and by indirect immunofluorescence and bimolecular fluorescence complementation analyses. The results showed that CIV nonstructural protein 1 (NS1) can strongly suppress the RIG-I–mediated innate immune response, and the novel interactions between CIV matrix proteins (M1 and M2) and canine RIG-I were disclosed. These findings provide a basis for investigating the antiviral mechanism of canine RIG-I against CIV, which can lead to effective strategies for preventing CIV infection in dogs.


2020 ◽  
Vol 182 ◽  
pp. 104926
Author(s):  
Hideki Tani ◽  
Miyuki Kimura ◽  
Hiroshi Yamada ◽  
Hikaru Fujii ◽  
Satoshi Taniguchi ◽  
...  

2007 ◽  
Vol 88 (10) ◽  
pp. 2627-2635 ◽  
Author(s):  
Alexey A. Matskevich ◽  
Karin Moelling

In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-α and IFN-β genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.


2021 ◽  
Author(s):  
Lili Dou ◽  
Xiaoli Tao ◽  
Wei Zhao ◽  
Guofeng Zheng ◽  
Ying Lu ◽  
...  

Aim: To explore whether shRNA targeting nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) could inhibit SFTSV replication in Vero cells. Materials & methods: SFTSV used in this experiment was propagated in Vero cells and stored at -20°C. shRNA plasmid against NSs of SFTSV was transfected to Vero cells and infected with SFTSV, after which western blotting and tissue culture infective dose (TCID50) were used to measure the virus titers. Results: shRNA against NSs protein decreased the expression of NSs and inhibited the replication of SFTSV. Conclusion: The constructed SFTSV NSs-shRNA plasmid could inhibit the replication of SFTSV. It was concluded that SFTSV NSs-shRNA could inhibit virus replication for at least 72 h. shRNA-mediated antiviral effects were dose-dependent.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Promisree Choudhury ◽  
Luke D. Bussiere ◽  
Cathy L. Miller

ABSTRACT Mammalian orthoreovirus (MRV) infection induces phosphorylation of translation initiation factor eIF2α, which promotes the formation of discrete cytoplasmic inclusions, termed stress granules (SGs). SGs are emerging as a component of the innate immune response to virus infection, and modulation of SG assembly is a common mechanism employed by viruses to counter this antiviral response. We previously showed that MRV infection induces SGs early and then interferes with SG formation as infection proceeds. In this work, we found that SG-associated proteins localized to the periphery of virus-encoded cytoplasmic structures, termed virus factories (VFs), where viral transcription, translation, and replication occur. The localization of SG proteins to VFs was dependent on polysome dissociation and occurred via association of the SG effector protein, Ras-GAP SH3-binding protein 1 (G3BP1), with the MRV nonstructural protein σNS, which localizes to VFs via association with VF nucleating protein, μNS. Deletion analysis of the σNS RNA binding domain and G3BP1 RNA (RRM) and ribosomal (RGG) binding domains showed that σNS association and VF localization phenotypes of G3BP1 do not occur solely through RNA or ribosomal binding but require both the RRM and RGG domains of G3BP1 for maximal viral-factory-like structure (VFL) localization and σNS association. Coexpression of σNS and μNS resulted in disruption of normal SG puncta, and in cells lacking G3BP1, MRV replication was enhanced in a manner correlating with strain-dependent induction of host translation shutoff. These results suggest that σNS association with G3BP1 and relocalization of G3BP1 to the VF periphery play roles in SG disruption to facilitate MRV replication in the host translational shutoff environment. IMPORTANCE SGs and SG effector proteins have emerged as important, yet poorly understood, players in the host's innate immune response to virus infection. MRV infection induces SGs early during infection that are dispersed and/or prevented from forming during late stages of infection despite continued activation of the eIF2α signaling pathway. Cellular and viral components involved in disruption of SGs during late stages of MRV infection remain to be elucidated. This work provides evidence that MRV disruption of SGs may be facilitated by association of the MRV nonstructural protein σNS with the major SG effector protein G3BP1 and subsequent localization of G3BP1 and other SG-associated proteins around the peripheries of virus-encoded factories, interrupting the normal formation of SGs. Our findings also reveal the importance of G3BP1 as an inhibitor of MRV replication during infection for the first time.


2012 ◽  
Vol 13 (S18) ◽  
Author(s):  
Ignacio S Caballero ◽  
Gracia Bonilla ◽  
Judy Y Yen ◽  
John H Connor

2019 ◽  
Vol 25 (6) ◽  
pp. 480-484 ◽  
Author(s):  
Shigeki Nakamura ◽  
Naoki Iwanaga ◽  
Shintaro Hara ◽  
Satoshi Shimada ◽  
Yukio Kashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document