Stability, Consistency and Convergence of Time-Marching Free-Vortex Rotor Wake Algorithms

2001 ◽  
Vol 46 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Mahendra J. Bhagwat ◽  
J. Gordon Leishman
Keyword(s):  
Author(s):  
Vincent Leroy ◽  
Jean-Christophe Gilloteaux ◽  
Maxime Philippe ◽  
Aurélien Babarit ◽  
Pierre Ferrant

Depending on the environmental conditions, floating Horizontal Axis Wind Turbines (FHAWTs) may have a very unsteady behaviour. The wind inflow is unsteady and fluctuating in space and time. The floating platform has six Degrees of Freedom (DoFs) of movement. The aerodynamics of the rotor is subjected to many unsteady phenomena: dynamic inflow, stall, tower shadow and rotor/wake interactions. State-of-the-art aerodynamic models used for the design of wind turbines may not be accurate enough to model such systems at sea. For HAWTs, methods such as Blade Element Momentum (BEM) [1] have been widely used and validated for bottom fixed turbines. However, the motions of a floating system induce unsteady phenomena and interactions with its wake that are not accounted for in BEM codes [2]. Several research projects such as the OC3 [3], OC4 [4] and OC5 [5] projects focus on the simulation of FHAWTs. To study the seakeeping of Floating Offshore Wind Turbines (FOWTs), it has been chosen to couple an unsteady free vortex wake aerodynamic solver (CACTUS) to a seakeeping code (InWave [6]). The free vortex wake theory assumes a potential flow but inherently models rotor/wake interactions and skewed rotor configurations. It shows a good compromise between accuracy and computational time. A first code-to-code validation has been done with results from FAST [7]on the FHAWT OC3 test case [3] considering the NREL 5MW wind turbine on the OC3Hywind SPAR platform. The code-to-code validation includes hydrodynamics, moorings and control (in torque and blade pitch). It shows good agreement between the two codes for small amplitude motions, discrepancies arise for rougher sea conditions due to differences in the used aerodynamic models.


2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


Author(s):  
Huishe Wang ◽  
Qingjun Zhao ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

A detailed unsteady numerical simulation has been carried out to investigate the shock systems in the high pressure (HP) turbine rotor and unsteady shock-wake interaction between coupled blade rows in a 1+1/2 counter-rotating turbine (VCRT). For the VCRT HP rotor, due to the convergent-divergent nozzle design, along almost all the span, fishtail shock systems appear after the trailing edge, where the pitch averaged relative Mach number is exceeding the value of 1.4 and up to 1.5 approximately (except the both endwalls). A group of pressure waves create from the suction surface after about 60% axial chord in the VCRT HP rotor, and those waves interact with the inner-extending shock (IES). IES first impinges on the next HP rotor suction surface and its echo wave is strong enough and cannot be neglected, then the echo wave interacts with the HP rotor wake. Strongly influenced by the HP rotor wake and LP rotor, the HP rotor outer-extending shock (OES) varies periodically when moving from one LP rotor leading edge to the next. In VCRT, the relative Mach numbers in front of IES and OES are not equal, and in front of IES, the maximum relative Mach number is more than 2.0, but in front of OES, the maximum relative Mach number is less than 1.9. Moreover, behind IES and OES, the flow is supersonic. Though the shocks are intensified in VCRT, the loss resulted in by the shocks is acceptable, and the HP rotor using convergent-divergent nozzle design can obtain major benefits.


AIAA Journal ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 470-478 ◽  
Author(s):  
J. M. Kim ◽  
N. M. Komerath
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document