Current control laws for active control of helicopter structural vibration are designed for steady-state flight conditions, while the vibration response of maneuvering flight has not been taken into consideration yet. In order to obtain full-time vibration suppression capability, the authors propose a filtered least mean square-mixed sensitivity robust control method based on reference signal reconstruction (LMS-MSRC), driving piezoelectric stack actuators to suppress helicopter structural vibration response in maneuvering flight. When feedback controller designed by
H
∞
theory is implemented, active damping is added on the secondary path to weaken the adverse effects of its sudden changes in maneuvering flight state. Furthermore, a reference signal reconstruction scheme is given concerning equivalent secondary path. In addition, the reconstruction accuracy, the convergence speed, stability, and global validity of the hybrid controller are analysed. Compared with multichannel Fx-LMS, numerical simulations of LMS-MSRC for vibration suppression are undertaken with a helicopter simplified finite element model under several typical flight conditions. Further experiments of real-time free-free beam vibration control are performed, driven by a stacked piezoelectric actuator. The instantaneous overshoot of measured response is 42% less than the peak value and its attenuation reaches 85% within 2.5 s. Numerical and experimental results reveal that the proposed algorithm is practical for suppressing transient disturbance and multifrequency helicopter vibration response during maneuvering flight with faster convergence speed and better robustness.