maneuvering flight
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Hyeonsoo Yeo ◽  
Robert A. Ormiston

The UH-60A Airloads Workshop was a unique collaboration of aeromechanics experts from the U.S. Government, industry, and academia to address technical issues that hindered accurate rotor loads predictions. The Airloads Workshop leveraged the NASA/Army UH-60A Airloads flight test and NFAC wind tunnel test data. It functioned continuously for 17 years, from 2001 to 2018, and brought about one of the most important advancements in rotorcraft aeromechanics prediction capabilities by successfully demonstrating high-fidelity coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) analyses for both steady and maneuvering flight. The article is divided into two parts. Part I surveys the background of rotorcraft CFD/CSD development difficulties, the origins of the Airloads Workshop, and the rapid success achieved during the first phase that consisted of eight Workshops. Part II describes ongoing development during the subsequent two phases of the Airloads Workshop, the Ninth through the 13th, and the 14th through the 31st Workshops; the impact of the Airloads Workshop; and the lessons learned. Part I surveys the technical activities that led to a breakthrough for CFD/CSD coupling to successfully predict rotor blade airloads in trimmed steady-level flight conditions. This success illustrated the importance of collaboration among key experts with diverse backgrounds focused on a common objective to advance rotorcraft prediction methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yifan Qin ◽  
Yang Lu ◽  
Jinchao Ma ◽  
Huiyu Yue

Current control laws for active control of helicopter structural vibration are designed for steady-state flight conditions, while the vibration response of maneuvering flight has not been taken into consideration yet. In order to obtain full-time vibration suppression capability, the authors propose a filtered least mean square-mixed sensitivity robust control method based on reference signal reconstruction (LMS-MSRC), driving piezoelectric stack actuators to suppress helicopter structural vibration response in maneuvering flight. When feedback controller designed by H ∞ theory is implemented, active damping is added on the secondary path to weaken the adverse effects of its sudden changes in maneuvering flight state. Furthermore, a reference signal reconstruction scheme is given concerning equivalent secondary path. In addition, the reconstruction accuracy, the convergence speed, stability, and global validity of the hybrid controller are analysed. Compared with multichannel Fx-LMS, numerical simulations of LMS-MSRC for vibration suppression are undertaken with a helicopter simplified finite element model under several typical flight conditions. Further experiments of real-time free-free beam vibration control are performed, driven by a stacked piezoelectric actuator. The instantaneous overshoot of measured response is 42% less than the peak value and its attenuation reaches 85% within 2.5 s. Numerical and experimental results reveal that the proposed algorithm is practical for suppressing transient disturbance and multifrequency helicopter vibration response during maneuvering flight with faster convergence speed and better robustness.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xing He ◽  
Wei Jiang ◽  
Caisheng Jiang

This paper focuses on the linear parameter varying (LPV) modeling and controller design for a flexible air-breathing hypersonic vehicle (AHV). Firstly, by selecting the measurable altitude and velocity as gain-scheduled variables, the original longitudinal nonlinear model for AHV is transformed into the LPV model via average gridding division, vertex trimming, Jacobian linearization, and multiple linear regression within the entire flight envelope. Secondly, using the tensor product model transformation method, the obtained LPV model is converted into the polytopic LPV model via high-order singular value decomposition (HOSVD). Third, the validity and applicability of the HOSVD-based LPV model are further demonstrated by designing a robust controller for command tracking control during maneuvering flight over a large envelope.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Nan Zheng ◽  
Moli Chen ◽  
Guihuo Luo ◽  
Zhifeng Ye

When aircraft make a maneuvering during flight, additional loads acting on the engine rotor system are generated, which may induce rub-impact faults between the rotor and stator. To study the rub-impact response characteristics of the rotor system during hovering flight, the dynamic model of a rub-impact rotor system is established with lateral-torsional vibration coupling effect under arbitrary maneuvering flight conditions using the finite element method and Lagrange equation. An implicit numerical integral method combining the Newmark-β and Newton–Raphson methods is used to solve the vibration response. The results indicate that the dynamic characteristics of the rotor system will change during maneuvering flight, and the subharmonic vibrations are amplified in both lateral and torsional vibrations due to maneuvering overload. The form of the rub-impact is different during level and hovering flight conditions: the rub-impact may occur at an arbitrary phase of the whole cycle under the condition of level flight, while only local rub-impact occurs during hovering flight. Under the both flight conditions, the rub-impact has a large effect on the spectral characteristics, periodicity, and stability of the rotor system.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haodong Huo ◽  
Shijun Ji ◽  
Ji Zhao ◽  
Rengquan Sun ◽  
Handa Dai

The effect of maneuver overload on a new type of the multiplanar conformal off-axis four-mirror is studied under the noninertial environment of aerospace. Two kinds of maneuvering flight, horizontal maneuvering and vertical maneuvering, are taken as examples, and the force analysis of the aircraft in the noninertial environment is considered. And the force analysis of the aircraft and the multiplanar conformal off-axis four-mirror is connected by the overload coefficient. Finally, the finite element simulation analysis of the multiplanar conformal off-axis four-mirror is carried out. The results show that the influence of maneuver overload on the multiplanar conformal off-axis four-mirror cannot be ignored. Large overload will result in large deformation of the multiplanar conformal off-axis four-mirror. The deformation is closely related to the structure of the multiplanar conformal off-axis four-mirror. Under the action of lateral force, nonuniform deformation is more likely to occur on the surface of the multiplanar conformal off-axis four-mirror.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2330
Author(s):  
Renshan Zhang ◽  
Su Cao ◽  
Kuang Zhao ◽  
Huangchao Yu ◽  
Yongyang Hu

Performing autonomous maneuvering flight planning and optimization remains a challenge for unmanned aerial vehicles (UAVs), especially for fixed-wing UAVs due to its high maneuverability and model complexity. A novel hybrid-driven fixed-wing UAV maneuver optimization framework, inspired by apprenticeship learning and nonlinear programing approaches, is proposed in this paper. The work consists of two main aspects: (1) Identifying the model parameters for a certain fixed-wing UAV based on the demonstrated flight data performed by human pilot. Then, the features of the maneuvers can be described by the positional/attitude/compound key-frames. Eventually, each of the maneuvers can be decomposed into several motion primitives. (2) Formulating the maneuver planning issue into a minimum-time optimization problem, a novel nonlinear programming algorithm was developed, which was unnecessary to determine the exact time for the UAV to pass by the key-frames. The simulation results illustrate the effectiveness of the proposed framework in several scenarios, as both the preservation of geometric features and the minimization of maneuver times were ensured.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Luo Zhe ◽  
Li Xinsan ◽  
Wang Lixin ◽  
Shen Qiang

In order to improve the autonomy of gliding guidance for complex flight missions, this paper proposes a multiconstrained intelligent gliding guidance strategy based on optimal guidance and reinforcement learning (RL). Three-dimensional optimal guidance is introduced to meet the terminal latitude, longitude, altitude, and flight-path-angle constraints. A velocity control strategy through lateral sinusoidal maneuver is proposed, and an analytical terminal velocity prediction method considering maneuvering flight is studied. Aiming at the problem that the maneuvering amplitude in velocity control cannot be determined offline, an intelligent parameter adjustment method based on RL is studied. This method considers parameter determination as a Markov Decision Process (MDP) and designs a state space via terminal speed and an action space with maneuvering amplitude. In addition, it constructs a reward function that integrates terminal velocity error and gliding guidance tasks and uses Q-Learning to achieve the online intelligent adjustment of maneuvering amplitude. The simulation results show that the intelligent gliding guidance method can meet various terminal constraints with high accuracy and can improve the autonomous decision-making ability under complex tasks effectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Nan Zheng ◽  
Mo-li Chen ◽  
Gui-Huo Luo ◽  
Zhi-Feng Ye

Under the flight maneuvering of an aircraft, the maneuvering load on the rotor is generated, which may induce the change of dynamic behavior of aeroengine rotor system. To study the influence on the rotor dynamic behavior of constant maneuvering overload, a nonlinear dynamic model of bearing-rotor system under arbitrary maneuver flight conditions is presented by finite element method. The numerical integral method is used to investigate the dynamic characteristics of the rotor model under constant maneuvering overload, and the simulation results are verified by experimental works. Based on this, the dynamic characteristics of a complex intermediate bearing-squeeze film dampers- (SFD-) rotor system during maneuvering flight are analyzed. The simulation results indicate that the subharmonic components are amplified under constant maneuvering overload. The amplitude of the combined frequency components induced by the coupling of the inner and outer rotors is weakened. The static displacements of the rotor caused by the additional excitation force are observed. Besides, the period stability of the movement of the rotor deteriorates during maneuver flight. The design of counterrotation of the inner and outer rotors can effectively reduce the amplitude of subharmonic under constant maneuvering overload.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changwu Liu ◽  
Haowen Wang ◽  
Chen Jiang

Purpose The paper aims at developing a novel algorithm to estimate high-order derivatives of rotorcraft angular rates to break the contradiction between bandwidth and filtering performance because high-order derivatives of angular rates are crucial to rotorcraft control. Traditional causal estimation algorithms such as digital differential filtering or various tracking differentiators cannot balance phase-lead angle loss and high-frequency attenuation performance of the estimated differentials under the circumstance of strong vibration from the rotor system and the rather low update rate of angular rates. Design/methodology/approach The algorithm, capable of estimating angular rate derivatives to maximal second order, fuses multiple attitude signal sources through a first-proposed randomized angular motion maneuvering model independent of platform dynamics with observations generated by cascaded tracking differentiators. Findings The maneuvering flight test on 5-kg-level helicopter and the ferry flight test on 230-kg-level helicopter prove such algorithm is feasible to generate higher signal to noise ratio derivative estimation of angular rates than traditional differentiators in regular flight states with enough bandwidth for flight control. Research limitations/implications The decrease of update rate of input attitude signals will weaken the bandwidth performance of the algorithm and higher sampling rate setting is recommended. Practical implications Rotorcraft flight control researchers and engineers would benefit from the estimation method when implementing flight control laws requiring angular rate derivatives. Originality/value A purely kinematic randomized angular motion model for flight vehicle is first established, combining rigid-body Euler kinematics. Such fusion algorithm with observations generated by cascaded tracking differentiators to estimate angular rate derivatives is first proposed, realized and flight tested.


Author(s):  
James H. Stephenson ◽  
Michael E. Watts ◽  
Eric Greenwood ◽  
Kyle A. Pascioni

An extensive flight-test campaign has been conducted to look into developing actionable advice for pilots of today's vehicles to reduce their acoustic footprints. Ten distinct vehicles were tested at three different test ranges, with nine of the vehicles' data being documented here. Twelve pairs of turning conditions were tested to determine their effect on blade–vortex interaction noise. Each turning flight condition was evaluated using the peak A-weighted, band-limited (50–2500 Hz), sound pressure level measured throughout the maneuver. This metric was a surrogate for blade–vortex interaction (BVI) noise, and the difference between the peak values of each turning pair was investigated. That peak value difference was subsequently corrected by the offset from the intended vehicle altitude at turn initiation from the actual altitude at initiation. The corrected amplitudes were investigated and grouped into six validated actionable guidance principles that can be given to pilots to immediately reduce their acoustic footprint during operations. This generic guidance works by keeping the rotor well away from the wake throughout the maneuver, thus increasing miss distance and reducing the occurrence of objectionable BVI noise.


Sign in / Sign up

Export Citation Format

Share Document