scholarly journals ON THE RICCI CURVATURE OF SUBMANIFOLDS IN THE WARPED PRODUCT L × f F

2002 ◽  
Vol 39 (5) ◽  
pp. 693-708 ◽  
Author(s):  
Young-Mi Kim ◽  
Jin-Suk Pak
Author(s):  
Hironori Kumura

Let UB(p0; ρ1) × f MV be a cylindrically bounded domain in a warped product manifold := MB × fMV and let M be an isometrically immersed submanifold in . The purpose of this paper is to provide explicit radii of the geodesic balls of M which first exit from UB(p0; ρ1) × fMV for the case in which the mean curvature of M is sufficiently small and the lower bound of the Ricci curvature of M does not diverge to –∞ too rapidly at infinity.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amira A. Ishan

The present paper studies the applications of Obata’s differential equations on the Ricci curvature of the pointwise semislant warped product submanifolds. More precisely, by analyzing Obata’s differential equations on pointwise semislant warped product submanifolds, we demonstrate that, under certain conditions, the base of these submanifolds is isometric to a sphere. We also look at the effects of certain differential equations on pointwise semislant warped product submanifolds and show that the base is isometric to a special type of warped product under some geometric conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanlin Li ◽  
Akram Ali ◽  
Fatemah Mofarreh ◽  
Nadia Alluhaibi

In this paper, we show that if the Laplacian and gradient of the warping function of a compact warped product submanifold Ω p + q in the hyperbolic space ℍ m − 1 satisfy various extrinsic restrictions, then Ω p + q has no stable integral currents, and its homology groups are trivial. Also, we prove that the fundamental group π 1 Ω p + q is trivial. The restrictions are also extended to the eigenvalues of the warped function, the integral Ricci curvature, and the Hessian tensor. The results obtained in the present paper can be considered as generalizations of the Fu–Xu theorem in the framework of the compact warped product submanifold which has the minimal base manifold in the corresponding ambient manifolds.


Filomat ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 125-146
Author(s):  
Meraj Khan ◽  
Cenep Ozel

The objective of this paper is to achieve the inequality for Ricci curvature of a contact CR-warped product submanifold isometrically immersed in a generalized Sasakian space form admitting a trans-Sasakian structure in the expressions of the squared norm of mean curvature vector and warping function. We provide numerous physical applications of the derived inequalities. Finally, we prove that under a certain condition the base manifold is isometric to a sphere with a constant sectional curvature.


2019 ◽  
Vol 17 (01) ◽  
pp. 2050009
Author(s):  
Meraj Ali Khan ◽  
Ali H. Alkhaldi ◽  
Lamia Saeed Alqahtani ◽  
Kamran Khan

The objective of this paper is to study contact CR-warped product submanifolds admitting Ricci soliton in the setting of generalized Sasakian space forms with a nearly trans-Sasakian structure. More precisely, we obtain some classifications for these warped product submanifolds by using Ricci curvature and Euler–Lagrange equation


2019 ◽  
Vol 146 ◽  
pp. 103510 ◽  
Author(s):  
Akram Ali ◽  
Pişcoran Laurian-Ioan ◽  
Ali H. Alkhaldi

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1317
Author(s):  
Meraj Ali Khan ◽  
Ibrahim Aldayel

The fundamental goal of this study was to achieve the Ricci curvature inequalities for a skew CR-warped product (SCR W-P) submanifold isometrically immersed in a complex space form (CSF) in the expressions of the squared norm of mean curvature vector and warping functions (W-F). The equality cases were likewise examined. In particular, we also derived Ricci curvature inequalities for CR-warped product (CR W-P) submanifolds. To sustain this study, an example of these submanifolds is provided.


2015 ◽  
Vol 23 (2) ◽  
pp. 259-277
Author(s):  
Yaning Wang ◽  
Ximin Liu

Abstract In this paper, by supposing a natural comparison inequality on the positive r-th mean curvatures of the hypersurface, we obtain some new Bernstein-type theorems for complete spacelike hypersurfaces immersed in a semi-Riemannian warped product of constant sectional curvature. Generalizing the above results, under a restriction on the sectional curvature or the Ricci curvature tensor of the fiber of a warped product, we also prove some new rigidity theorems in semi-Riemannian warped products. Our main results extend some recent Bernstein-type theorems proved in [12, 13, 14].


2018 ◽  
Vol 29 (11) ◽  
pp. 1850081 ◽  
Author(s):  
Bin Chen ◽  
Zhongmin Shen ◽  
Lili Zhao

The warped product structures of Finsler metrics are studied in this paper. We give the formulae of the flag curvature and Ricci curvature of these metrics, and obtain the characterization of such metrics to be Einstein. Some Einstein Finsler metrics of this type are constructed.


Sign in / Sign up

Export Citation Format

Share Document