Studies on Electroplated Grinding Wheel with Diamond Abrasive Particles

1965 ◽  
Vol 16 (11) ◽  
pp. 497-500
Author(s):  
Matsuhei KISHI ◽  
Hideo YAMAMOTO ◽  
Urako KIYONO
2016 ◽  
Vol 42 (7) ◽  
pp. 8884-8890 ◽  
Author(s):  
Weipeng Miao ◽  
Ning Yan ◽  
Yucheng Zhao ◽  
Mingyao Liu ◽  
Yapeng Li ◽  
...  

2008 ◽  
Vol 53-54 ◽  
pp. 155-160 ◽  
Author(s):  
Qiu Sheng Yan ◽  
Ai Jun Tang ◽  
Jia Bin Lu ◽  
Wei Qiang Gao

A new plate polishing technique with an instantaneous tiny-grinding wheel cluster based on the magnetorheological (MR) effect is presented in this paper, and some experiments were conducted to prove its effectiveness and applicability. Under certain experimental condition, the material removal rate was improved by a factor of 20.84% as compared with the conventional polishing methods with dissociative abrasive particles, while the surface roughness of the workpiece was not obviously increased. Furthermore, the composite of the MR fluid was optimized to obtain the best polishing performance. On the basis of the experimental results, the material removal model of the new plate polishing technique was presented.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Xining Zhang ◽  
Xu Liu ◽  
Huan Zhao

Grinding is a vital method in machining techniques and an effective way to process materials such as hardened steels and silicon wafers. However, as the running time increases, the unbalance of grinding wheels produce a severe vibration and noise of grinding machines because of the uneven shedding of abrasive particles and the uneven adsorption of coolant, which has a severe and direct impact on the accuracy and quality of parts. Online balancing is an important and necessary technique to reduce the unbalance causing by these factors and adjust the time-varying balance condition of the grinding wheel. A new active online balancing method using liquid injection and free dripping is proposed in this paper. The proposed online balancing method possesses a continuous balancing ability and the problem of losing balancing ability for the active online balancing method using liquid injection is solved effectively because some chambers are full of liquid. The residual liquid contained in the balancing chambers is utilized as a compensation mass for reducing rotor unbalance, where the rotor phase is proposed herein as a target for determining the machine unbalance. A new balancing device with a controllable injection and free dripping structure is successfully designed. The relationship between the mass of liquid in the balancing chamber and the centrifugal force produced by liquid is identified. The performance of the proposed method is verified by the balancing experiments and the results of these experiments show that the vibration of unbalance response is reduced by 87.3% at 2700 r/min.


2019 ◽  
Vol 548 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Jicai Kuai ◽  
Jiaqi Zhang ◽  
Dmitrii V. Ardashev ◽  
Huali Zhang

2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Jason Ratay ◽  
Pei-Ying Wu ◽  
Alex Feirvezers ◽  
Hitomi Yamaguchi

Abstract Nickel-based superalloys have a wide range of high-temperature applications such as turbine blades. The complex geometries of these applications and the specific properties of the materials raise difficulties in the surface finishing. Magnetic abrasive finishing (MAF) has proven effective in finishing the complex geometries. In MAF, the magnetic properties of the workpiece, tool, and abrasive play important roles in controlling finishing characteristics. This paper presents the effects of nickel coating on the abrasive behavior during finishing and resulting finishing characteristics of Ni-based superalloys. The Ni-coated diamond abrasive is more attracted to the magnet than the Ni-based superalloy surface. As a result, fewer Ni-coated diamond abrasive particles, which are stuck between the magnetic-particle brush and the target surface, participate in surface finishing. Because of this, coupled with the reduced sharpness of abrasive cutting edges due to the coating, Ni-coated diamond abrasive cannot effectively smooth the target surface in MAF. However, the Ni coating is worn off during finishing of the hard, rough, additively manufactured surface. Then, the diamond abrasive participates in finishing as uncoated diamond abrasive and facilitates the material removal, finishing the target surface.


2006 ◽  
Vol 532-533 ◽  
pp. 145-148 ◽  
Author(s):  
Jia Bin Lu ◽  
Juan Yu ◽  
Qiu Sheng Yan ◽  
Wei Qiang Gao ◽  
Liang Chi Zhang

Based on the magnetorheological (MR) effect of abrasive slurry, this paper presents an innovative superfine machining method. In this technique, the particle-dispersed MR fluid is used as a special instantaneous bond to cohere abrasive particles and magnetic particles so as to form a dynamical tiny-grinding wheel. This tiny-grinding wheel can be used to polish the surface of brittle materials in millimeter or sub-millimeter scale. The characteristics of the machined glass surfaces examined by the scanning electron microscope (SEM) and the Talysurf roughness tester confirmed the effectiveness of the finishing technique. The machined surface with convex center and concave fringe demonstrates that the material removal process is dominated by the synergy of the applied pressure and the relative velocity between the abrasives and workpiece. In the case of glass finishing, the mode of material removal is found to be plastic, and controlled by the abrasive-wear mechanism.


2010 ◽  
Vol 135 ◽  
pp. 24-29 ◽  
Author(s):  
Jia Bin Lu ◽  
Qiu Sheng Yan ◽  
Hong Tian ◽  
Wei Qiang Gao

Based on the electro-magneto-rheological (EMR) effect, the Fe3O4-based EMR fluid dispersed with micron-sized finishing abrasives is used as a polishing fluid to form a dynamical tiny-grinding wheel under an electro-magnetically coupled field. Using this EMR-effect-based tiny-grinding wheel, experiments were conducted to investigate the effect of the grain size, content and material of abrasive on material removal effect of normal glass. Results indicate that the abrasive can change the chain-like structure of the EMR-effect-based tiny-grinding wheel and influence the material removal ability of the tiny-grinding wheel remarkably. The material removal amount increases with the increase of the content of diamond abrasive in the EMR fluid, and grows slowly when the proportion of diamond abrasive exceeds to 6%. While the grain size of abrasive increases, the material removal amount increases at the beginning and decreases afterwards. The effect of abrasive on material removal depends on the hardness of abrasive, the greater the abrasive hardness, the higher the material removal efficiency. The machined area has a close relationship with both the density and grain size of abrasive.


2021 ◽  
Vol 60 (1) ◽  
pp. 691-701
Author(s):  
Zhibo Yang ◽  
Wang Sun ◽  
Dongyu He ◽  
Daocheng Han ◽  
Wei Wang ◽  
...  

Abstract In this article, the laser-assisted ultrasonic vibration dressing technique was applied to the cubic boron nitride (CBN) grinding wheel to study the effect of various process parameters (namely, laser power, dressing depth, feed rate, and grinding wheel speed) on the grinding force, surface quality, and morphological evolution of CBN abrasive particles. The results showed that abrasive particles’ morphology mainly undergoes micro-crushing, local crushing, large-area crushing, macro-crushing, and other morphological changes. The dressing force can be effectively reduced by controlling the dressing process parameters. Besides, grinding tests are performed on the grinding wheel after dressing to reveal specimens’ surface quality. Excellent grinding characteristics and grinding quality of the grinding wheel were obtained by the proposed technique with the optimized process parameters.


2019 ◽  
Vol 889 ◽  
pp. 80-86
Author(s):  
Truong Hoanh Son ◽  
Tran Thi Van Nga

This article presents preliminary investigations on the cutting ability of the singer layer metal-bonded cBN grinding wheel manufactured by electroplating method at Vietnamese laboratory. The cutting ability of the grinding wheel is evaluated by two factors: grinding ratio G and surface roughness of workpiece. These results are compared to those of the Japanese grinding wheels. The experimental results showed that the fabricated cBN grinding wheel has good cutting ability with high grinding ratio G. The value of the grinding ratio was 600 to 1800 in the grinding process of SKD11 steel (hardness of 62-63HRC) at the grinding speed V of 12.56m/s, feed rate S of 300mm/min, depth of cut t of 0.01mm. The maximum grinding ratio (1800) is equivalent to the average grinding ratio of the Japanese grinding wheel. The grinding ratio is also maintained up to 26 cutting hours. The good grinding surface was achieved with the average Ra of 2.5μm. In addition, the bonding of cBN abrasive to the wheel body was observed with scanning electron microscope (SEM) of the surface of grinding wheel after the cutting process. The SEM image shown that the cBN abrasive particles were not removed from the wheel surface.


2006 ◽  
Vol 315-316 ◽  
pp. 352-356
Author(s):  
Qiu Sheng Yan ◽  
F.F. Bi ◽  
N.Q. Wu

This article first presents the performance of Electrorheological Fluid (ER fluid). Thus, a new-style machining technique based on ER effect to form a tiny grinding wheel is developed for superfine machining. By adding abrasive particles to ER, an array of stable chains of ER particles can be shaped when an electric field is applied and abrasive particles are fixed to these chains structure. When the tip of tool is rotated, the abrasive particles rotate with the flow and a superfine grinding process come into being. This process is expected to be applicable to the aspheric surface machining of micro miniature components made of optic glass or other hard-brittle materials.


Sign in / Sign up

Export Citation Format

Share Document