Efficacy of three greenhouse screening methods for the identification of physiological resistance to white mold in dry bean

2009 ◽  
Vol 89 (4) ◽  
pp. 755-762 ◽  
Author(s):  
H Terán ◽  
S P Singh

White mold (WM) caused by Sclerotinia sclerotiorum (Lib.) de Bary is the most devastating disease of common bean (dry and snap or garden bean) (Phaseolus vulgaris L.) in North America. The use of a reliable screening method (SM) in common bean is crucial to improve physiological resistance to WM. The objective of this study was to compare the efficacy of three SM to identify physiological resistance in dry bean genotypes with different evolutionary origins and levels of resistance. Screening methods tested were: (i) the modified straw test or cut–stem (CSM); (ii) infected bean flower (IFL); and (iii) infected oat seed (IOS). A 195, ICA Bunsi, Othello, and VCW 54 dry bean were tested with the three SM. The experimental design was a split plot in randomized complete blocks with three replications in 2007 and 2008. Two independent inoculations 1 wk apart for each SM were made. The WM reaction was scored at 16, 23, and 33 d post-inoculation (DPI) using a 1 to 9 scale. There were highly significant differences between SM and its interaction with years. The CSM and IFL were the most consistent and highly correlated (r > 0.70, P < 0.01). Interspecific breeding line VCW 54 consistently had the highest WM resistance across years, SM, and evaluation dates, followed by A 195. White mold scores increased with delayed evaluations. Thus, CSM or IFL with disease assessed 33 DPI should be used for identifying common bean genotypes with high levels of physiological resistance to WM.Key words: Common bean, growth habit, race Mesoamerica, race Nueva Granada, Phaseolus vulgaris, Sclerotinia sclerotiorum

1992 ◽  
Vol 117 (2) ◽  
pp. 321-327 ◽  
Author(s):  
P.N. Miklas ◽  
K.F. Grafton ◽  
B.D. Nelson

A laboratory procedure was tested to determine whether excised stems would allow a reliable indication of partial physiological resistance (PPR) to white mold [Sclerotinia sclerotiorum (Lib.) deBary] in dry bean (Phaseolus vulgaris L.). Excised stems from 11- and 28-day-old plants were inoculated with growing mycelium of S. sclerotiorum, incubated for 4 to 7 days (11- and 28-day assays, respectively), then assayed for lesion length (LL). A total of 15 bean genotypes were screened for PPR, as indicated by LL. Significant (P < 0.05) differences among LL means of small- and medium-seeded bean genotypes were detected in the 28-day assay, whereas only LL means among medium-seeded genotypes. differed significantly (P < 0.05) in the n-day assay. `Bunsi', `C-20', `Sierra', `Topaz', and snap bean breeding lines NY 5262, NY 5394, and NY 5403 had the highest PPR and `Upland', D76125, and `UI-114' the lowest. The results from both assays were repeatable. A moderately high correlation (r = 0.68, P < 0.02) was observed between PPR and field resistance. The 28-day assay has potential for evaluating dry bean germplasm for PPR to white mold disease caused by S. sclerotiorum. A 28-day assay also was used to measure virulence of 18 isolates of S. sclerotiorum. The 18 isolates did not differ (P < 0.05) for virulence when measured by LL. The lack of any genotype × isolate interaction for LL indicated lack of host-pathogen specificity.


2020 ◽  
Vol 42 ◽  
pp. e42786
Author(s):  
Carla Luciana Abán ◽  
Gisel Maria Taboada ◽  
Norma Beatriz Casalderrey ◽  
Maria Elisa Maggio ◽  
Mario Osvaldo Chocobar ◽  
...  

White mold caused by Sclerotinia sclerotiorum (Lib.) de Bary is a devastating disease that affects the common bean (Phaseolus vulgaris. L) crop worldwide. In Argentina, white mold has been detected in all bean production areas, reaching seed yield and quality losses up to 100% on susceptible common bean cultivars under favorable weather conditions. The aim of this study was to screen the physiological resistance of 20 common bean accessions to five genetically distinct isolates of S. sclerotiorum collected from the main common bean growing area of Argentina, using the greenhouse straw test. The white mold reaction was scored at 7, 14, and 21 days post-inoculation using a 1 (no disease symptoms) to 9 (severely diseased or dead plants) scale and the area under the disease progress curve (AUDPC) was determined. Highly significant differences (p < 0.001) were observed between isolates, accessions and genotype x isolate interaction at the three evaluations dates. All cultivars and lines were susceptible at the end of the assessment, except line A 195 which was resistant to white mold against the five isolates tested and was significantly different from all accessions. This work represents a valuable contribution to regional breeding programmes aimed to obtain cultivars with durable resistance.


2021 ◽  
Vol 48 (6) ◽  
pp. 729-739
Author(s):  
María Fernanda Villarreal-Delgado ◽  
Fannie Isela Parra-Cota ◽  
Luis Alberto Cira-Chávez ◽  
María Isabel Estrada-Alvarado ◽  
Sergio de los Santos-Villalobos

2019 ◽  
Author(s):  
Atena Oladzadabbasabadi ◽  
Sujan Mamidi ◽  
Phillip N. Miklas ◽  
Rian Lee ◽  
Phillip McClean

Abstract Background White mold (WM) is a major disease in common bean ( Phaseolus vulgaris L.), and its complex quantitative genetic control has limited the development of WM resistant cultivars. WM2.2 is one of the nine meta-QTL that has a major effect on WM tolerance. This QTL explains up to 35% of the phenotypic variation and was previously mapped to a large interval on Pv02. Our objective was to narrow the interval of this QTL using QTL-based bulk segregant analysis.Results The phenotypic and genotypic data from two RIL populations (R31 and Z0726-9), which possess different genetic backgrounds for white mold resistance, were used to select resistant and susceptible lines to generate subpopulations for bulk DNA sequencing, and reads were aligned against the sequence of the resistance parent. The QTL physical intervals for each RIL population were mapped by fixed SNPs in 10kb-2kb sliding windows. WM2.2 QTL was split into two regions WM2.2a (3.54-4.56 Mbp; euchromatic) and WM 2.2b (12.19 to 26.41 Mbp; heterochromatic) in populations R31 and Z0726-9, respectively. For each QTL interval, the possible functional contribution of significant non-synonymous and synonymous polymorphisms was investigated. Gene models encoding for pentatricopeptide repeat, gibberellin 2-oxidase, and heat-shock proteins are the likely candidate genes associated with WM2.2a resistance. A TIR-NBS-LRR class of disease resistance protein and a EF-TU receptor are potential candidate genes associated with WM2.2b resistance and most likely trigger a physiological resistance response to WM.Conclusion QTL-based pooled sequencing analysis revealed that the large genomic region associated with WM2.2 meta QTL consists of two major QTL each associated with a different WM resistance function. WM2.2a region is most likely associated with avoidance mechanisms while WM2.2b region triggers physiological resistance.


2015 ◽  
Vol 50 (12) ◽  
pp. 1220-1224 ◽  
Author(s):  
Daniel Diego Costa Carvalho ◽  
Alaerson Maia Geraldine ◽  
Murillo Lobo Junior ◽  
Sueli Corrêa Marques de Mello

Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris). Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306) and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS), in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.


2003 ◽  
Vol 128 (4) ◽  
pp. 552-558 ◽  
Author(s):  
Mark J. Bassett ◽  
Phillip N. Miklas

Among light red and dark red kidney common bean (Phaseolus vulgaris L.) varieties, pink seedcoat color (light red kidney) is dominant to dark red, but when Red Mexican varieties (with dark red seedcoats) are crossed with dark red kidney varieties, dark red seedcoat is dominant to the pink segregants observed in an F2 population. A genetic investigation of this reversal of dominance was performed by making crosses in all combinations among standard varieties of the four recessive-red market classes—Light Red Kidney `California Early Light Red Kidney', Pink `Sutter Pink', Red Mexican `NW 63', and Dark Red Kidney `Montcalm'—and observing segregation for seedcoat colors in F2 and F3 progenies. The data were consistent with the hypothesis that `NW 63' carries a new allele at Rk, viz., rkcd, where cd stands for convertible dark red kidney. Thus, C rkcd expresses dark red kidney seedcoats and cu rkcd expresses pink seedcoats. Also, C B rkcd expresses garnet brown seedcoats, whereas C B rkd expresses liver brown seedcoat color. Thus, we propose the gene symbol rkcd for the Rk locus gene in `NW 63'. The rk gene from Light Red Kidney `Redkloud' and `Sutter Pink' was backcrossed (with cu b v) into the recurrent parent 5-593, a Florida dry bean breeding line with seedcoat genotype P [C r] J G B V Rk. In the F2 progenies of BC2 to 5-593, the cu b v rk segregants from `Redkloud' gave true pink seedcoats, whereas those derived from `Sutter Pink' gave consistently very weak pink color under humid Florida growing conditions. We propose the gene symbol rkp, where p stands for pale pink, for the distinctive rk allele in `Sutter Pink'. The more general implications of the above findings were discussed.


2018 ◽  
Vol 44 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Lenio U. Ferreira ◽  
Victor A. Ribeiro ◽  
Patrícia G. S. Melo ◽  
Murillo Lobo Junior ◽  
Joaquim Geraldo C. Costa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document