Aggregate slaking during rapid wetting: Hydrophobicity and pore occlusion
The slaking process after rapid wetting is a key factor controlling soil structural stability in dry soil, and an understanding of the relative importance of the different mechanisms involved in slaking may help in the design of management strategies aimed at maintaining a stable surface soil structure. Slaking has been linked to, among other factors, rapid pressure build-up in aggregate, and previous work has emphasized the role of organic matter to hamper that pressure build-up, possibly due to hydrophobicity, reducing rapid water entry within aggregates and hence the build-up. This study emphasizes this latter aspect linked to slaking. The evolution of the intra-aggregate pressure, the matter lost by slaking and the expelled air after rapid wetting of two soils of different textures (clay loam soil and silty-clay loam soil) amended with different types of paper sludge were studied. Hydrophobicity effects were also studied using a tensio-active solution. The results of these experiments showed that when aggregates were submitted to sudden wetting, those treated with paper sludge had an improved resistance to the destructive action of rapid wetting. The lower pressures measured in the aggregates from the amended soils and having less slaking resulted most likely from slow water entry and reduced swelling. Detailed investigation on the link between hydrophobicity and water entry revealed that the true hydrophobic effect (modification of contact angle) was non-existent for the silty-clay loam and minor for the clay loam. This study, rather, suggests that changes in the water potential at the wetting front following organic matter addition and aggregate immersion most likely depend on pore occlusion and on changes in pore surface roughness. Key words: Aggregate stability, organic matter, slaking, pressure, swelling, wettability