On the Lattice of Primitive Convergence Structures

1971 ◽  
Vol 23 (3) ◽  
pp. 392-397
Author(s):  
C. R. Atherton

Let S be any set and denote by F(S) the collection of all fiters on S. The collection A(S) of all mappings from F(S) to 2s, 2s being ordered by the dual of its usual ordering, may be regarded as a product of complete Boolean algebras and is, therefore, a complete atomic Boolean algebra [4]. A(S) is called the lattice of primitive convergence structures on S. If q ∈ A(S) and , then is said to q-converge to a point x ∈ S if . The collection of all topologies on S may be identified with a subset of A(S); this subset of A(S) will be denoted by T(S). A more specialized class of primitive convergence structures, and one which properly contains T(S), is C(S), the subcomplete lattice of all convergence structures on S.

1973 ◽  
Vol 15 (1) ◽  
pp. 94-104 ◽  
Author(s):  
C. H. Randall ◽  
M. F. Janowitz ◽  
D. J. Foulis

It is well known that the so-called reduced Borel algebra, that is, the Boolean algebra of all Borel subsets of the unit interval modulo the meager Borel sets of this interval, can be abstractly characterized as a complete, totally non-atomic Boolean algebra containing a countable join dense subset. (For an indication of the history of this result, see, for example, ([2], p. 483, footnote 12.) From this characterization, it easily follows that the reduced Borel algebra B is “homogeneous” in the sense that every non-trivial in B is isomorphic to B.


1991 ◽  
Vol 56 (4) ◽  
pp. 1212-1229
Author(s):  
Robert Bonnet ◽  
Matatyahu Rubin

AbstractFor a complete theory of Boolean algebras T, let MT denote the class of countable models of T. For B1, B2 ∈ MT, let B1 ≤ B2 mean that B2 is elementarily embeddable in B2. Theorem 1. For every complete theory of Boolean algebras T, if T ≠ Tω, then ‹MT, ≤› is well-quasi-ordered. ∎ We define Tω. For a Boolean algebra B, let I(B) be the ideal of all elements of the form a + s such that B ↾ a is an atomic Boolean algebra and B ↾ s is an atomless Boolean algebra. The Tarski derivative of B is defined as follows: B(0) = B and B(n + 1) = B(n)/I(B(n)). Define Tω to be the theory of all Boolean algebras such that for every n ∈ ω, B(n) ≠ {0}. By Tarski [1949], Tω is complete. Recall that ‹A, < › is partial well-quasi-ordering, it is a partial quasi-ordering and for every {ai, ⃒ i ∈ ω} ⊆ A, there are i < j < ω such that ai ≤ aj. Theorem 2. contains a subset M such that the partial orderings ‹M, ≤ ↾ M› and are isomorphic. ∎ Let M′0 denote the class of all countable Boolean algebras. For B1, B2 ∈ M′0, let B1 ≤′ B2 mean that B1 is embeddable in B2. Remark. ‹M′0, ≤′› is well-quasi-ordered. ∎ This follows from Laver's theorem [1971] that the class of countable linear orderings with the embeddability relation is well-quasi-ordered and the fact that every countable Boolean algebra is isomorphic to a Boolean algebra of a linear ordering.


2002 ◽  
Vol 02 (02) ◽  
pp. 145-225 ◽  
Author(s):  
STEFFEN LEMPP ◽  
MIKHAIL PERETYAT'KIN ◽  
REED SOLOMON

In this paper, we investigate the Lindenbaum algebra ℒ(T fin ) of the theory T fin = Th (M fin ) of the class M fin of all finite models of a finite rich signature. We prove that this algebra is an atomic Boolean algebra while its Gödel numeration γ is a [Formula: see text]-numeration. Moreover, the quotient algebra (ℒ(T fin )/ℱ, γ/ℱ) modulo the Fréchet ideal ℱ is a [Formula: see text]-algebra, which is universal over the class of all [Formula: see text] Boolean algebras. These conditions characterize uniquely the algebra ℒ(T fin ); moreover, these conditions characterize up to recursive isomorphism the numerated Boolean quotient algebra (ℒ(T fin )/ℱ, γ/ℱ). These results extend the work of Trakhtenbrot [17] and Vaught [18] on the first order theory of the class of all finite models of a finite rich signature.


1970 ◽  
Vol 11 (2) ◽  
pp. 156-161 ◽  
Author(s):  
C. R. Atherton

This paper may be regarded as a continuation of the investigations begun in [2]; certain intrinsic lattice topologies are studied, especially the order and ideal topologies in Boolean algebras, bicompactly generated lattices, and other more general structures. The results of [1], [2], and [3] are shown to be closely related. It is proved that the ideal topology on any Boolean algebra has a closed subbase consisting of all sublattices, whereas the order topology on an atomic Boolean algebra has a closed subbase consisting of all sub-complete lattices. It is also shown that the order topology on an atomic Boolean algebra is autouniformizable (in the sense defined by Rema [3]) and, if the ground set is infinite, strictly coarser than the ideal topology. The conditions Cl and C3 on a lattice, introduced by Kent [1], are shown to be slightly stronger than the condition “ bicompactly generated ”, and in complete lattices, where these conditions are satisfied, the order topology is shown to be coarser than the ideal topology.


Author(s):  
Andrew Bacon

This chapter presents a series questions in the philosophy of vagueness that will constitute the primary subjects of this book. The stance this book takes on these questions is outlined, and some preliminary ramifications are explored. These include the idea that (i) propositional vagueness is more fundamental than linguistic vagueness; (ii) propositions are not themselves sentence-like; they are coarse grained, and form a complete atomic Boolean algebra; (iii) vague propositions are, moreover, not simply linguistic constructions either such as sets of world-precisification pairs; and (iv) propositional vagueness is to be understood by its role in thought. Specific theses relating to the last idea include the thesis that one’s total evidence can be vague, and that there are vague propositions occupying every evidential role, that disagreements about the vague ultimately boil down to disagreements in the precise, and that one should not care intrinsically about vague matters.


2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


1980 ◽  
Vol 45 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Matatyahu Rubin ◽  
Saharon Shelah

AbstractTheorem 1. (◊ℵ1,) If B is an infinite Boolean algebra (BA), then there is B1, such that ∣ Aut (B1) ≤∣B1∣ = ℵ1 and 〈B1, Aut (B1)〉 ≡ 〈B, Aut(B)〉.Theorem 2. (◊ℵ1) There is a countably compact logic stronger than first-order logic even on finite models.This partially answers a question of H. Friedman. These theorems appear in §§1 and 2.Theorem 3. (a) (◊ℵ1) If B is an atomic ℵ-saturated infinite BA, Ψ Є Lω1ω and 〈B, Aut (B)〉 ⊨Ψ then there is B1, Such that ∣Aut(B1)∣ ≤ ∣B1∣ =ℵ1, and 〈B1, Aut(B1)〉⊨Ψ. In particular if B is 1-homogeneous so is B1. (b) (a) holds for B = P(ω) even if we assume only CH.


1962 ◽  
Vol 5 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Günter Bruns

Let B be a Boolean algebra and let ℳ and n be two systems of subsets of B, both containing all finite subsets of B. Let us assume further that the join ∨M of every set M∊ℳ and the meet ∧N of every set N∊n exist. Several authors have treated the question under which conditions there exists an isomorphism φ between B and a field δ of sets, satisfying the conditions:


10.37236/4831 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Ashish Mishra ◽  
Murali K. Srinivasan

Let $G$ be a finite group acting on the finite set $X$ such that the corresponding (complex) permutation representation is multiplicity free. There is a natural rank and order preserving action of the wreath product $G\sim S_n$ on the generalized Boolean algebra $B_X(n)$. We explicitly block diagonalize the commutant of this action.


1971 ◽  
Vol 23 (2) ◽  
pp. 339-344
Author(s):  
Timothy Cramer

A Boolean algebra B is a retract of an algebra A if there exist homomorphisms ƒ: B → A and g: A → B such that gƒ is the identity map B. Some important properties of retracts of Boolean algebras are stated in [3, §§ 30, 31, 32]. If A and B are a-complete, and A is α-generated by B, Dwinger [1, p. 145, Theorem 2.4] proved necessary and sufficient conditions for the existence of an α-homomorphism g: A → B such that g is the identity map on B. Note that if a is not an infinite cardinal, B must be equal to A. The dual problem was treated by Wright [6]; he assumed that A and B are σ-algebras, and that g: A → B is a σ-homomorphism, and gave conditions for the existence of a homomorphism ƒ:B → A such that gƒ is the identity map.


Sign in / Sign up

Export Citation Format

Share Document