atomic boolean algebra
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Andrew Bacon

This chapter presents a series questions in the philosophy of vagueness that will constitute the primary subjects of this book. The stance this book takes on these questions is outlined, and some preliminary ramifications are explored. These include the idea that (i) propositional vagueness is more fundamental than linguistic vagueness; (ii) propositions are not themselves sentence-like; they are coarse grained, and form a complete atomic Boolean algebra; (iii) vague propositions are, moreover, not simply linguistic constructions either such as sets of world-precisification pairs; and (iv) propositional vagueness is to be understood by its role in thought. Specific theses relating to the last idea include the thesis that one’s total evidence can be vague, and that there are vague propositions occupying every evidential role, that disagreements about the vague ultimately boil down to disagreements in the precise, and that one should not care intrinsically about vague matters.


2014 ◽  
Vol 90 (1) ◽  
pp. 134-140
Author(s):  
W. E. LONGSTAFF

AbstractA definition of the reflexive index of a family of (closed) subspaces of a complex, separable Hilbert space $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ is given, analogous to one given by D. Zhao for a family of subsets of a set. Following some observations, some examples are given, including: (a) a subspace lattice on $H$ with precisely five nontrivial elements with infinite reflexive index; (b) a reflexive subspace lattice on $H$ with infinite reflexive index; (c) for each positive integer $n$ satisfying dim $H\ge n+1$, a reflexive subspace lattice on $H$ with reflexive index $n$. If $H$ is infinite-dimensional and ${\mathcal{B}}$ is an atomic Boolean algebra subspace lattice on $H$ with $n$ equidimensional atoms and with the property that the vector sum $K+L$ is closed, for every $K,L\in {\mathcal{B}}$, then ${\mathcal{B}}$ has reflexive index at most $n$.


2009 ◽  
Vol 2009 ◽  
pp. 1-13
Author(s):  
Eva Cogan

Working within a complete (not necessarily atomic) Boolean algebra, we use a sublattice to define a topology on that algebra. Our operators generalizecomplementon a lattice which in turn abstracts the set theoretic operator. Less restricted than those of Banaschewski and Samuel, the operators exhibit some surprising behaviors. We consider properties of such lattices and their interrelations. Many of these properties are abstractions and generalizations of topological spaces. The approach is similar to that of Bachman and Cohen. It is in the spirit of Alexandroff, Frolík, and Nöbeling, although the setting is more general. Proceeding in this manner, we can handle diverse topological theorems systematically before specializing to get as corollaries as the topological results of Alexandroff, Alo and Shapiro, Dykes, Frolík, and Ramsay.


2002 ◽  
Vol 02 (02) ◽  
pp. 145-225 ◽  
Author(s):  
STEFFEN LEMPP ◽  
MIKHAIL PERETYAT'KIN ◽  
REED SOLOMON

In this paper, we investigate the Lindenbaum algebra ℒ(T fin ) of the theory T fin = Th (M fin ) of the class M fin of all finite models of a finite rich signature. We prove that this algebra is an atomic Boolean algebra while its Gödel numeration γ is a [Formula: see text]-numeration. Moreover, the quotient algebra (ℒ(T fin )/ℱ, γ/ℱ) modulo the Fréchet ideal ℱ is a [Formula: see text]-algebra, which is universal over the class of all [Formula: see text] Boolean algebras. These conditions characterize uniquely the algebra ℒ(T fin ); moreover, these conditions characterize up to recursive isomorphism the numerated Boolean quotient algebra (ℒ(T fin )/ℱ, γ/ℱ). These results extend the work of Trakhtenbrot [17] and Vaught [18] on the first order theory of the class of all finite models of a finite rich signature.


2000 ◽  
Vol 65 (4) ◽  
pp. 1858-1862
Author(s):  
Marcel Crabbé

AbstractWe characterize the 3-stratiflable theorems of NF as a 3-stratifiable extension of NF3: and show that NF is equiconsistent with TT plus raising type axioms for sentences asserting the existence of some predicate over an atomic Boolean algebra.


1991 ◽  
Vol 56 (4) ◽  
pp. 1212-1229
Author(s):  
Robert Bonnet ◽  
Matatyahu Rubin

AbstractFor a complete theory of Boolean algebras T, let MT denote the class of countable models of T. For B1, B2 ∈ MT, let B1 ≤ B2 mean that B2 is elementarily embeddable in B2. Theorem 1. For every complete theory of Boolean algebras T, if T ≠ Tω, then ‹MT, ≤› is well-quasi-ordered. ∎ We define Tω. For a Boolean algebra B, let I(B) be the ideal of all elements of the form a + s such that B ↾ a is an atomic Boolean algebra and B ↾ s is an atomless Boolean algebra. The Tarski derivative of B is defined as follows: B(0) = B and B(n + 1) = B(n)/I(B(n)). Define Tω to be the theory of all Boolean algebras such that for every n ∈ ω, B(n) ≠ {0}. By Tarski [1949], Tω is complete. Recall that ‹A, < › is partial well-quasi-ordering, it is a partial quasi-ordering and for every {ai, ⃒ i ∈ ω} ⊆ A, there are i < j < ω such that ai ≤ aj. Theorem 2. contains a subset M such that the partial orderings ‹M, ≤ ↾ M› and are isomorphic. ∎ Let M′0 denote the class of all countable Boolean algebras. For B1, B2 ∈ M′0, let B1 ≤′ B2 mean that B1 is embeddable in B2. Remark. ‹M′0, ≤′› is well-quasi-ordered. ∎ This follows from Laver's theorem [1971] that the class of countable linear orderings with the embeddability relation is well-quasi-ordered and the fact that every countable Boolean algebra is isomorphic to a Boolean algebra of a linear ordering.


Author(s):  
D. C. Kent

AbstractThe order topology is compact and T2 in both the scale and retracted scale of any uniform space (S, U). if (S, U) is T2 and totally bounded, the Samuel compactification associated with (S, U) can be obtained by uniformly embedding (S, U) in its order retracted scale (that is, the retracted scale with its order topology). This implies that every compact T2 space is both a closed subspace of a complete, infinitely distributive lattice in its order topology, and also a continuous, closed image of a closed subspace of a complete atomic Boolean algebra in its order topology.


1975 ◽  
Vol 40 (3) ◽  
pp. 439-442 ◽  
Author(s):  
S. K. Thomason

§1. A complete atomic modal algebra (CAMA) is a complete atomic Boolean algebra with an additional completely additive unary operator. A (Kripke) frame is just a binary relation on a nonempty set. If is a frame, then is a CAMA, where mX = {y ∣ (∃x)(y < x Є X)}; and if is a CAMA then is a frame, where is the set of atoms of and b1 < b2 ⇔ b1 ∩ mb2 ≠∅.Now , and the validity of a modal formula on is equivalent to the satisfaction of a modal algebra polynomial identity by and conversely, so the validity-preserving constructions on frames ought to be in some sense equivalent to the identity-preserving constructions on CAMA's. The former are important for modal logic, and many of the results of universal algebra apply to the latter, so it is worthwhile to fix precisely the sense of the equivalence.The most important identity-preserving constructions on CAMA's can be described in terms of homomorphisms and complete homomorphisms. Let and be the categories of CAMA's with homomorphisms and complete homomorphisms, respectively. We shall define categories and of frames with appropriate morphisms, and show them to be dual respectively to and . Then we shall consider certain identity-preserving constructions on CAMA's and attempt to describe the corresponding validity-preserving constructions on frames.The proofs of duality involve some rather detailed calculations, which have been omitted. All the category theory a reader needs to know is in the first twenty pages of [7].


1975 ◽  
Vol 40 (2) ◽  
pp. 167-170
Author(s):  
George Metakides ◽  
J. M. Plotkin

The following is a classical result:Theorem 1.1. A complete atomic Boolean algebra is isomorphic to a power set algebra [2, p. 70].One of the consequences of [3] is: If M is a countable standard model of ZF and is a countable (in M) model of a complete ℵ0-categorical theory T, then there is a countable standard model N of ZF and a Λ ∈ N such that the Boolean algebra of definable (in T with parameters from ) subsets of is isomorphic to the power set algebra of Λ in N. In particular if and T the theory of equality with additional axioms asserting the existence of at least n distinct elements for each n < ω, then there is an N and Λ ∈ N with 〈PN(Λ), ⊆〉 isomorphic to the countable, atomic, incomplete Boolean algebra of the finite and cofinite subsets of ω.From the above we see that some incomplete Boolean algebras can be realized as power sets in standard models of ZF.Definition 1.1. A countable Boolean algebra 〈B, ≤〉 is a pseudo-power set if there is a countable standard model of ZF, N and a set Λ ∈ N such thatIt is clear that a pseudo-power set is atomic.


Sign in / Sign up

Export Citation Format

Share Document