Some Extreme Rays of the Positive Pluriharmonic Functions

1979 ◽  
Vol 31 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Frank Forelli

1.1. We will denote by B the open unit ball in Cn, and we will denote by H(B) the class of all holomorphic functions on B. LetThus N(B) is convex (and compact in the compact open topology). We think that the structure of N(B) is of interest and importance. Thus we proved in [1] that if(1.1)if(1.2)and if n≧ 2, then g is an extreme point of N(B). We will denote by E(B) the class of all extreme points of N(B). If n = 1 and if (1.2) holds, then as is well known g ∈ E(B) if and only if(1.3)

1979 ◽  
Vol 31 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Gerard Mcdonald

Let S denote the unit sphere in Cn, B the (open) unit ball in Cn and H∞(B) the collection of all bounded holomorphic functions on B. For f ∈ H∞(B) the limitsexist for almost every ζ in S, and the map ƒ → ƒ* defines an isometric isomorphism from H∞(B) onto a closed subalgebra of L∞(S), denoted H∞(S). (The only measure on S we will refer to in this paper is the Lebesgue measure, dσ, generated by Euclidean surface area.) Rudin has shown in [4] that the spaces H∞(B) + C(B) and H∞(S) + C(S) are Banach algebras in the sup norm. In this paper we will show that the maximal ideal space of H∞(B) + C(B), Σ (H∞(B) + C(B)), is naturally homeomorphic to Σ (H∞(B)) and that Z (H∞(S) + C(S)) is naturally homeomorphic to Σ (H∞(S))\B.


1994 ◽  
Vol 49 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Juan Ferrera ◽  
Angeles Prieto

We introduce in this paper the space of bounded holomorphic functions on the open unit ball of a Banach space endowed with the strict topology. Some good properties of this topology are obtained. As applications, we prove some results on approximation by polynomials and a description of the continuous homomorphisms.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Verónica Dimant ◽  
Domingo García ◽  
Manuel Maestre ◽  
Pablo Sevilla-Peris

For two complex Banach spacesXandY, in this paper, we study the generalized spectrumℳb(X,Y)of all nonzero algebra homomorphisms fromℋb(X), the algebra of all bounded type entire functions onX, intoℋb(Y). We endowℳb(X,Y)with a structure of Riemann domain overℒ(X*,Y*)wheneverXis symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the setℳb,∞(X,BY)of all nonzero algebra homomorphisms fromℋb(X)intoℋ∞(BY)of bounded holomorphic functions on the open unit ball ofYandℳ∞(BX,BY)of all nonzero algebra homomorphisms fromℋ∞(BX)intoℋ∞(BY).


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Osamu Hatori ◽  
Yasuo Iida ◽  
Stevo Stević ◽  
Sei-Ichiro Ueki

We study multiplicative isometries on the followingF-algebras of holomorphic functions: Smirnov classN*(X), Privalov classNp(X), Bergman-Privalov classANαp(X),and ZygmundF-algebraNlogβN(X),whereXis the open unit ball𝔹nor the open unit polydisk𝔻ninℂn.


Author(s):  
J. Globevnik

AbstractLet AB be the algebra of all bounded continuous functions on the closed unit ball B of c0, analytic on the open unit ball, with sup norm, and let AU be the sub-algebra of AB of those functions which are uniformly continuous on B. Call a set S ⊂ B a boundary of AB (AU) iffor every f ∈ AB (f ∈AU, respectively). In the paper we study the boundaries of AB and AU. We give a complete description of the boundaries of AU and present some necessary and some sufficient conditions for a set to be a boundary of AB. We also give some examples of boundaries.


Author(s):  
Josip Globevnik
Keyword(s):  

It is shown that if V is a closed submanifold of the open unit ball of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ 1. It is also shown that if V is a closed submanifold of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ ∞.


1990 ◽  
Vol 33 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Juan A. Gatica ◽  
Gaston E. Hernandez ◽  
P. Waltman

The boundary value problemis studied with a view to obtaining the existence of positive solutions in C1([0, 1])∩C2((0, 1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x, y) = a(x)y−p, p>0.This boundary value problem arises in the search of positive radially symmetric solutions towhere Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and |x| is the Euclidean norm of x.


1995 ◽  
Vol 47 (4) ◽  
pp. 673-683 ◽  
Author(s):  
R. M. Aron ◽  
B. J. Cole ◽  
T. W. Gamelin

AbstractLet 𝒳 be a complex Banach space, with open unit ball B. We consider the algebra of analytic functions on B that are weakly continuous and that are uniformly continuous with respect to the norm. We show these are precisely the analytic functions on B that extend to be weak-star continuous on the closed unit ball of 𝒳**. If 𝒳* has the approximation property, then any such function is approximable uniformly on B by finite polynomials in elements of 𝒳*. On the other hand, there exist Banach spaces for which these finite-type polynomials fail to approximate. We consider also the approximation of entire functions by finite-type polynomials. Assuming 𝒳* has the approximation property, we show that entire functions are approximable uniformly on bounded sets if and only if the spectrum of the algebra of entire functions coincides (as a point set) with 𝒳**.


1967 ◽  
Vol 19 ◽  
pp. 312-320 ◽  
Author(s):  
Frank Forelli

Let R be an open Riemann surface. ƒ belongs to H1(R) if ƒ is holomorphic on R and if the subharmonic function |ƒ| has a harmonie majorant on R. Let p be in R and define ||ƒ|| to be the value at p of the least harmonic majorant of |ƒ|. ||ƒ|| is a norm on the linear space H1(R), and with this norm H1(R) is a Banach space (7). The unit ball of H1(R) is the closed convex set of all ƒ in H1(R) with ||ƒ|| ⩽ 1. Problem: What are the extreme points of the unit ball of H1(R)? de Leeuw and Rudin have given a complete solution to this problem where R is the open unit disk (1).


1969 ◽  
Vol 16 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Bertram Yood

Let B be a complex Banach algebra with an identity 1 and an involution x→x*. Kadison (1) has shown that, if B is a B*-algebra, [the set of extreme points of its unit ball coincides with the set of elements x of B for which


Sign in / Sign up

Export Citation Format

Share Document